Suppr超能文献

一种用于健康记录链接的基于语义的K匿名方案。

A Semantic-Based K-Anonymity Scheme for Health Record Linkage.

作者信息

Lu Yang, Sinnott Richard O, Verspoor Karin

机构信息

Department of Computing and Information System, The University of Melbourne, Melbourne, Australia.

出版信息

Stud Health Technol Inform. 2017;239:84-90.

Abstract

Record linkage is a technique for integrating data from sources or providers where direct access to the data is not possible due to security and privacy considerations. This is a very common scenario for medical data, as patient privacy is a significant concern. To avoid privacy leakage, researchers have adopted k-anonymity to protect raw data from re-identification however they cannot avoid associated information loss, e.g. due to generalisation. Given that individual-level data is often not disclosed in the linkage cases, but yet remains potentially re-discoverable, we propose semantic-based linkage k-anonymity to de-identify record linkage with fewer generalisations and eliminate inference disclosure through semantic reasoning.

摘要

记录链接是一种用于整合来自数据源或提供者的数据的技术,由于安全和隐私考虑,无法直接访问这些数据。对于医疗数据来说,这是一种非常常见的情况,因为患者隐私是一个重大问题。为了避免隐私泄露,研究人员采用了k匿名来保护原始数据不被重新识别,然而他们无法避免相关的信息损失,例如由于泛化导致的信息损失。鉴于在链接案例中通常不会披露个人层面的数据,但这些数据仍有可能被重新发现,我们提出基于语义的链接k匿名,以通过更少的泛化来对记录链接进行去识别,并通过语义推理消除推理披露。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验