Shahabikargar Zahra, Khanna Sankalp, Sattar Adbul, Lind James
The CSIRO Australian e-Health Research Centre, Brisbane, Australia.
Institute for Integrated and Intelligent Systems, Griffith University, Australia.
Stud Health Technol Inform. 2017;239:133-138.
Accurate surgery duration estimation is essential for efficient use of hospital operating theatres and the scheduling of elective patients. This study focuses on analysing the performance of previously developed surgery duration prediction algorithms at a specialty level to gain further insight on their performance. We also evaluate algorithm performance after applying filtering to exclude unreliable data from modelling, and develop and validate new ensemble approaches for prediction. These are shown to significantly improve the prediction accuracy of the algorithms. Employing filtered data delivers a reduction in overall prediction error of 44% (Mean Absolute Percentage Error from 0.68 to 0.38) employing the Random Forests algorithm, while using the newly developed ensemble approach delivers a Mean Absolute Percentage Error of 0.31, a reduction of 55% when compared to the original error, and a reduction of 18% when compared to the Random Forests performance on filtered data.
准确估计手术时长对于高效利用医院手术室以及安排择期手术患者至关重要。本研究着重分析先前开发的手术时长预测算法在专科层面的性能,以进一步深入了解其性能表现。我们还在应用过滤方法以排除建模中的不可靠数据后评估算法性能,并开发和验证新的集成预测方法。结果表明,这些方法显著提高了算法的预测准确性。采用过滤后的数据,使用随机森林算法时总体预测误差降低了44%(平均绝对百分比误差从0.68降至0.38),而使用新开发的集成方法时平均绝对百分比误差为0.31,与原始误差相比降低了55%,与随机森林算法在过滤后数据上的性能相比降低了18%。