Suppr超能文献

全脑钙成像揭示果蝇的内在功能网络。

Whole-Brain Calcium Imaging Reveals an Intrinsic Functional Network in Drosophila.

机构信息

Department of Neurobiology, Stanford University, Stanford, CA 94103, USA; Stanford Neuroscience Institute, Stanford University, Stanford, CA 94103, USA.

Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Curr Biol. 2017 Aug 7;27(15):2389-2396.e4. doi: 10.1016/j.cub.2017.06.076. Epub 2017 Jul 27.

Abstract

A long-standing goal of neuroscience has been to understand how computations are implemented across large-scale brain networks. By correlating spontaneous activity during "resting states" [1], studies of intrinsic brain networks in humans have demonstrated a correspondence with task-related activation patterns [2], relationships to behavior [3], and alterations in processes such as aging [4] and brain disorders [5], highlighting the importance of resting-state measurements for understanding brain function. Here, we develop methods to measure intrinsic functional connectivity in Drosophila, a powerful model for the study of neural computation. Recent studies using calcium imaging have measured neural activity at high spatial and temporal resolution in zebrafish, Drosophila larvae, and worms [6-10]. For example, calcium imaging in the zebrafish brain recently revealed correlations between the midbrain and hindbrain, demonstrating the utility of measuring intrinsic functional connections in model organisms [8]. An important component of human connectivity research is the use of brain atlases to compare findings across individuals and studies [11]. An anatomical atlas of the central adult fly brain was recently described [12]; however, combining an atlas with whole-brain calcium imaging has yet to be performed in vivo in adult Drosophila. Here, we measure intrinsic functional connectivity in Drosophila by acquiring calcium signals from the central brain. We develop an alignment procedure to assign functional data to atlas regions and correlate activity between regions to generate brain networks. This work reveals a large-scale architecture for neural communication and provides a framework for using Drosophila to study functional brain networks.

摘要

长期以来,神经科学的目标一直是了解如何在大规模脑网络中实现计算。通过对“静息状态”[1]期间的自发活动进行相关研究,人类内在脑网络的研究表明与任务相关的激活模式[2]、与行为的关系[3]以及与衰老过程[4]和大脑疾病[5]相关的过程发生改变具有对应关系,突出了静息状态测量对于理解大脑功能的重要性。在这里,我们开发了用于测量果蝇内在功能连接的方法,果蝇是神经计算研究的强大模型。最近使用钙成像的研究已经以高空间和时间分辨率测量了斑马鱼、果蝇幼虫和蠕虫中的神经活动[6-10]。例如,最近在斑马鱼大脑中的钙成像揭示了中脑和后脑之间的相关性,证明了在模型生物中测量内在功能连接的实用性[8]。人类连接研究的一个重要组成部分是使用大脑图谱来比较个体和研究之间的发现[11]。最近描述了中央成年果蝇大脑的解剖图谱[12];然而,在成年果蝇体内,尚未将图谱与全脑钙成像结合使用。在这里,我们通过从中脑获取钙信号来测量果蝇的内在功能连接。我们开发了一种对齐程序,将功能数据分配给图谱区域,并对区域之间的活动进行相关,以生成大脑网络。这项工作揭示了神经通讯的大规模结构,并为使用果蝇研究功能大脑网络提供了框架。

相似文献

1
Whole-Brain Calcium Imaging Reveals an Intrinsic Functional Network in Drosophila.全脑钙成像揭示果蝇的内在功能网络。
Curr Biol. 2017 Aug 7;27(15):2389-2396.e4. doi: 10.1016/j.cub.2017.06.076. Epub 2017 Jul 27.
2
AICHA: An atlas of intrinsic connectivity of homotopic areas.AICHA:同伦区域内在连通性图谱。
J Neurosci Methods. 2015 Oct 30;254:46-59. doi: 10.1016/j.jneumeth.2015.07.013. Epub 2015 Jul 23.
5
Role of local network oscillations in resting-state functional connectivity.局部网络震荡在静息态功能连接中的作用。
Neuroimage. 2011 Jul 1;57(1):130-139. doi: 10.1016/j.neuroimage.2011.04.010. Epub 2011 Apr 12.
7
Analysis of functional neuronal connectivity in the Drosophila brain.果蝇大脑功能性神经元连接分析。
J Neurophysiol. 2012 Jul;108(2):684-96. doi: 10.1152/jn.00110.2012. Epub 2012 Apr 25.
10
Identification of Resting State Networks Involved in Executive Function.与执行功能相关的静息态网络的识别。
Brain Connect. 2016 Jun;6(5):365-74. doi: 10.1089/brain.2015.0399. Epub 2016 Mar 31.

引用本文的文献

1
High-speed whole-brain imaging in .中的高速全脑成像
bioRxiv. 2025 Jun 19:2025.06.18.660371. doi: 10.1101/2025.06.18.660371.
4
Investigation of epilepsy-related genes in a Drosophila model.在果蝇模型中对癫痫相关基因的研究。
Neural Regen Res. 2024 Dec 16;21(1):195-211. doi: 10.4103/NRR.NRR-D-24-00877.
5
BIFROST: A method for registering diverse imaging datasets of the brain.BIFROST:一种用于注册大脑不同成像数据集的方法。
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2322687121. doi: 10.1073/pnas.2322687121. Epub 2024 Nov 14.

本文引用的文献

2
Functional divisions for visual processing in the central brain of flying Drosophila.飞行果蝇中枢脑中视觉处理的功能分区。
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5523-32. doi: 10.1073/pnas.1514415112. Epub 2015 Aug 31.
4
Representations of Taste Modality in the Drosophila Brain.果蝇大脑中味觉模态的表征。
Neuron. 2015 Jun 17;86(6):1449-60. doi: 10.1016/j.neuron.2015.05.026. Epub 2015 Jun 4.
6
Connectomics-based analysis of information flow in the Drosophila brain.基于连接组学的果蝇大脑信息流分析。
Curr Biol. 2015 May 18;25(10):1249-58. doi: 10.1016/j.cub.2015.03.021. Epub 2015 Apr 9.
7
The connectomics of brain disorders.脑疾病的连接组学
Nat Rev Neurosci. 2015 Mar;16(3):159-72. doi: 10.1038/nrn3901.
9
Decreased segregation of brain systems across the healthy adult lifespan.在健康成年人的整个生命周期中,脑系统的分离减少。
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4997-5006. doi: 10.1073/pnas.1415122111. Epub 2014 Nov 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验