Sprague Daniel Y, Rusch Kevin, Dunn Raymond L, Borchardt Jackson M, Ban Steven, Bubnis Greg, Chiu Grace C, Wen Chentao, Suzuki Ryoga, Chaudhary Shivesh, Lee Hyun Jee, Yu Zikai, Dichter Benjamin, Ly Ryan, Onami Shuichi, Lu Hang, Kimura Koutarou D, Yemini Eviatar, Kato Saul
Department of Neurology, University of California San Francisco.
Department of Neurobiology, UMass Chan Medical School.
bioRxiv. 2024 Jun 29:2024.04.28.591397. doi: 10.1101/2024.04.28.591397.
We develop a data harmonization approach for volumetric microscopy data, still or video, consisting of a standardized format, data pre-processing techniques, and a set of human-in-the-loop machine learning based analysis software tools. We unify a diverse collection of 118 whole-brain neural activity imaging datasets from 5 labs, storing these and accompanying tools in an online repository called WormID (wormid.org). We use this repository to train three existing automated cell identification algorithms to, for the first time, enable accuracy in neural identification that generalizes across labs, approaching human performance in some cases. We mine this repository to identify factors that influence the developmental positioning of neurons. To facilitate communal use of this repository, we created open-source software, code, web-based tools, and tutorials to explore and curate datasets for contribution to the scientific community. This repository provides a growing resource for experimentalists, theorists, and toolmakers to (a) study neuroanatomical organization and neural activity across diverse experimental paradigms, (b) develop and benchmark algorithms for automated neuron detection, segmentation, cell identification, tracking, and activity extraction, and (c) inform models of neurobiological development and function.
我们为静态或视频体积显微镜数据开发了一种数据协调方法,该方法包括标准化格式、数据预处理技术以及一组基于人在回路机器学习的分析软件工具。我们整合了来自5个实验室的118个全脑神经活动成像数据集的多样化集合,并将这些数据集及相关工具存储在一个名为WormID(wormid.org)的在线存储库中。我们利用这个存储库训练三种现有的自动细胞识别算法,首次实现了跨实验室的神经识别准确性,在某些情况下接近人类水平。我们挖掘这个存储库以确定影响神经元发育定位的因素。为了便于社区使用这个存储库,我们创建了开源软件、代码、基于网络的工具和教程,以探索和整理数据集,为科学界做出贡献。这个存储库为实验人员、理论人员和工具制作人员提供了一个不断增长的资源,用于(a)研究不同实验范式下的神经解剖组织和神经活动,(b)开发和基准测试自动神经元检测、分割、细胞识别、跟踪和活动提取的算法,以及(c)为神经生物学发育和功能模型提供信息。