Suppr超能文献

建立和整合无脊椎动物神经系统功能的全脑图谱。

Building and integrating brain-wide maps of nervous system function in invertebrates.

机构信息

Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA.

Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Curr Opin Neurobiol. 2024 Jun;86:102868. doi: 10.1016/j.conb.2024.102868. Epub 2024 Apr 3.

Abstract

The selection and execution of context-appropriate behaviors is controlled by the integrated action of neural circuits throughout the brain. However, how activity is coordinated across brain regions, and how nervous system structure enables these functional interactions, remain open questions. Recent technical advances have made it feasible to build brain-wide maps of nervous system structure and function, such as brain activity maps, connectomes, and cell atlases. Here, we review recent progress in this area, focusing on C. elegans and D. melanogaster, as recent work has produced global maps of these nervous systems. We also describe neural circuit motifs elucidated in studies of specific networks, which highlight the complexities that must be captured to build accurate models of whole-brain function.

摘要

选择和执行上下文适当的行为是由整个大脑的神经回路的综合作用控制的。然而,活动如何在大脑区域之间协调,以及神经系统结构如何使这些功能相互作用成为开放的问题。最近的技术进步使得构建神经系统的大脑范围的结构和功能图谱成为可能,例如大脑活动图谱、连接组学和细胞图谱。在这里,我们重点关注 C. elegans 和 D. melanogaster,因为最近的工作已经生成了这些神经系统的全局图谱,回顾这一领域的最新进展。我们还描述了在特定网络研究中阐明的神经回路基元,这些基元突出了构建整个大脑功能准确模型必须捕捉的复杂性。

相似文献

1
Building and integrating brain-wide maps of nervous system function in invertebrates.
Curr Opin Neurobiol. 2024 Jun;86:102868. doi: 10.1016/j.conb.2024.102868. Epub 2024 Apr 3.
3
The Intrinsic Similarity of Topological Structure in Biological Neural Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):3292-3305. doi: 10.1109/TCBB.2023.3279443. Epub 2023 Oct 9.
4
The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles.
PLoS Comput Biol. 2016 Sep 8;12(9):e1005021. doi: 10.1371/journal.pcbi.1005021. eCollection 2016 Sep.
5
A multi-scale brain map derived from whole-brain volumetric reconstructions.
Nature. 2021 Mar;591(7848):105-110. doi: 10.1038/s41586-021-03284-x. Epub 2021 Feb 24.
6
Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect.
Curr Opin Neurobiol. 2012 Aug;22(4):609-14. doi: 10.1016/j.conb.2012.01.002. Epub 2012 Jan 27.
8
A set of hub neurons and non-local connectivity features support global brain dynamics in C. elegans.
Curr Biol. 2022 Aug 22;32(16):3443-3459.e8. doi: 10.1016/j.cub.2022.06.039. Epub 2022 Jul 8.
9
Reading the book of memory: sparse sampling versus dense mapping of connectomes.
Neuron. 2009 Apr 16;62(1):17-29. doi: 10.1016/j.neuron.2009.03.020.
10
Dynamic functional connectivity in the static connectome of Caenorhabditis elegans.
Curr Opin Neurobiol. 2022 Apr;73:102515. doi: 10.1016/j.conb.2021.12.002. Epub 2022 Feb 17.

引用本文的文献

1
Deep Neural Networks to Register and Annotate Cells in Moving and Deforming Nervous Systems.
bioRxiv. 2025 Jun 21:2024.07.18.601886. doi: 10.1101/2024.07.18.601886.
2
Closed-loop two-photon functional imaging in a freely moving animal.
Nat Commun. 2025 Jul 1;16(1):5950. doi: 10.1038/s41467-025-60648-x.
3
Hierarchical competing inhibition circuits govern motor stability in C. elegans.
Nat Commun. 2025 May 12;16(1):4405. doi: 10.1038/s41467-025-59668-4.
4
Neural Sequences Underlying Directed Turning in .
bioRxiv. 2024 Aug 11:2024.08.11.607076. doi: 10.1101/2024.08.11.607076.
5
CRASH2p: Closed-loop Two Photon Imaging in a Freely Moving Animal.
bioRxiv. 2024 Dec 13:2024.05.22.595209. doi: 10.1101/2024.05.22.595209.

本文引用的文献

1
Network statistics of the whole-brain connectome of Drosophila.
Nature. 2024 Oct;634(8032):153-165. doi: 10.1038/s41586-024-07968-y. Epub 2024 Oct 2.
2
Neuronal wiring diagram of an adult brain.
Nature. 2024 Oct;634(8032):124-138. doi: 10.1038/s41586-024-07558-y. Epub 2024 Oct 2.
3
4
Mapping the neural dynamics of locomotion across the Drosophila brain.
Curr Biol. 2024 Feb 26;34(4):710-726.e4. doi: 10.1016/j.cub.2023.12.063. Epub 2024 Jan 18.
5
The neuropeptidergic connectome of C. elegans.
Neuron. 2023 Nov 15;111(22):3570-3589.e5. doi: 10.1016/j.neuron.2023.09.043. Epub 2023 Nov 6.
6
Neural signal propagation atlas of Caenorhabditis elegans.
Nature. 2023 Nov;623(7986):406-414. doi: 10.1038/s41586-023-06683-4. Epub 2023 Nov 1.
7
A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission.
Curr Biol. 2023 Oct 23;33(20):4430-4445.e6. doi: 10.1016/j.cub.2023.08.088. Epub 2023 Sep 27.
8
The spatial and temporal structure of neural activity across the fly brain.
Nat Commun. 2023 Sep 11;14(1):5572. doi: 10.1038/s41467-023-41261-2.
9
System-wide mapping of peptide-GPCR interactions in C. elegans.
Cell Rep. 2023 Sep 26;42(9):113058. doi: 10.1016/j.celrep.2023.113058. Epub 2023 Aug 31.
10
Brain-wide representations of behavior spanning multiple timescales and states in C. elegans.
Cell. 2023 Sep 14;186(19):4134-4151.e31. doi: 10.1016/j.cell.2023.07.035. Epub 2023 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验