Suppr超能文献

区域性特化 hPSC 来源的类器官融合模型模拟人类大脑发育和中间神经元迁移。

Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration.

机构信息

Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.

Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.

出版信息

Cell Stem Cell. 2017 Sep 7;21(3):383-398.e7. doi: 10.1016/j.stem.2017.07.007. Epub 2017 Jul 27.

Abstract

Organoid techniques provide unique platforms to model brain development and neurological disorders. Whereas several methods for recapitulating corticogenesis have been described, a system modeling human medial ganglionic eminence (MGE) development, a critical ventral brain domain producing cortical interneurons and related lineages, has been lacking until recently. Here, we describe the generation of MGE and cortex-specific organoids from human pluripotent stem cells that recapitulate the development of MGE and cortex domains, respectively. Population and single-cell RNA sequencing (RNA-seq) profiling combined with bulk assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses revealed transcriptional and chromatin accessibility dynamics and lineage relationships during MGE and cortical organoid development. Furthermore, MGE and cortical organoids generated physiologically functional neurons and neuronal networks. Finally, fusing region-specific organoids followed by live imaging enabled analysis of human interneuron migration and integration. Together, our study provides a platform for generating domain-specific brain organoids and modeling human interneuron migration and offers deeper insight into molecular dynamics during human brain development.

摘要

类器官技术为大脑发育和神经疾病的模型提供了独特的平台。尽管已经描述了几种重现皮质发生的方法,但直到最近,一种模拟人类内侧神经节隆起(MGE)发育的系统,即产生皮质中间神经元和相关谱系的关键腹侧大脑区域的系统,一直缺乏。在这里,我们描述了从人类多能干细胞中生成 MGE 和皮质特化类器官的方法,分别重现了 MGE 和皮质区域的发育。群体和单细胞 RNA 测序(RNA-seq)分析与高通量测序的转座酶可及染色质分析(ATAC-seq)相结合,揭示了 MGE 和皮质类器官发育过程中的转录和染色质可及性动态以及谱系关系。此外,MGE 和皮质类器官生成了具有生理功能的神经元和神经元网络。最后,融合区域特异性类器官并进行实时成像,使我们能够分析人类中间神经元的迁移和整合。总之,我们的研究为生成特定脑区的类器官和模拟人类中间神经元的迁移提供了一个平台,并为人类大脑发育过程中的分子动力学提供了更深入的了解。

相似文献

1
Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration.
Cell Stem Cell. 2017 Sep 7;21(3):383-398.e7. doi: 10.1016/j.stem.2017.07.007. Epub 2017 Jul 27.
2
Generation and Fusion of Human Cortical and Medial Ganglionic Eminence Brain Organoids.
Curr Protoc Stem Cell Biol. 2018 Nov;47(1). doi: 10.1002/cpsc.61. Epub 2018 Sep 11.
3
Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development.
Cereb Cortex. 2019 Jun 1;29(6):2653-2667. doi: 10.1093/cercor/bhy133.
4
Deconstructing and reconstructing the human brain with regionally specified brain organoids.
Semin Cell Dev Biol. 2021 Mar;111:40-51. doi: 10.1016/j.semcdb.2020.05.023. Epub 2020 Jun 15.
5
Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation In Vitro and in the Rat Brain.
Stem Cell Reports. 2019 Feb 12;12(2):191-200. doi: 10.1016/j.stemcr.2018.12.014. Epub 2019 Jan 17.
6
Regulatory networks specifying cortical interneurons from human embryonic stem cells reveal roles for CHD2 in interneuron development.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11180-E11189. doi: 10.1073/pnas.1712365115. Epub 2017 Dec 11.
7
hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids.
Cell Stem Cell. 2019 Mar 7;24(3):487-497.e7. doi: 10.1016/j.stem.2018.12.015. Epub 2019 Feb 21.
8
A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence.
Dev Biol. 2008 Feb 1;314(1):127-36. doi: 10.1016/j.ydbio.2007.11.018. Epub 2007 Nov 28.
10
Dopamine stimulates differentiation and migration of cortical interneurons.
Biochem Biophys Res Commun. 2019 May 7;512(3):577-583. doi: 10.1016/j.bbrc.2019.03.105. Epub 2019 Mar 23.

引用本文的文献

1
Towards a quality control framework for cerebral cortical organoids.
Sci Rep. 2025 Aug 11;15(1):29431. doi: 10.1038/s41598-025-14425-x.
2
4
technology and ADMET research in traditional Chinese medicine.
Front Pharmacol. 2025 Jul 9;16:1605330. doi: 10.3389/fphar.2025.1605330. eCollection 2025.
6
Skeletal muscle, neuromuscular organoids and assembloids: a scoping review.
EBioMedicine. 2025 Jun 26;118:105825. doi: 10.1016/j.ebiom.2025.105825.
7
An Efficient Organoid Cutting Method for Long-Term Culture and High-Throughput Analyses.
Tissue Eng Regen Med. 2025 Jun 16. doi: 10.1007/s13770-025-00731-y.
8
Brain tissues, assemble! Inside the push to build better brain models.
Nature. 2025 May;641(8063):809-812. doi: 10.1038/d41586-025-01468-3.
9
Development of GABAergic Interneurons in the Human Cerebral Cortex.
Eur J Neurosci. 2025 May;61(9):e70136. doi: 10.1111/ejn.70136.
10
Bioengineering innovations for neural organoids with enhanced fidelity and function.
Cell Stem Cell. 2025 May 1;32(5):689-709. doi: 10.1016/j.stem.2025.03.014.

本文引用的文献

1
Fused cerebral organoids model interactions between brain regions.
Nat Methods. 2017 Jul;14(7):743-751. doi: 10.1038/nmeth.4304. Epub 2017 May 10.
2
Assembly of functionally integrated human forebrain spheroids.
Nature. 2017 May 4;545(7652):54-59. doi: 10.1038/nature22330. Epub 2017 Apr 26.
3
Cell diversity and network dynamics in photosensitive human brain organoids.
Nature. 2017 May 4;545(7652):48-53. doi: 10.1038/nature22047. Epub 2017 Apr 26.
4
Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia.
Cell Stem Cell. 2017 Apr 6;20(4):435-449.e4. doi: 10.1016/j.stem.2016.12.007. Epub 2017 Jan 19.
5
Massively parallel digital transcriptional profiling of single cells.
Nat Commun. 2017 Jan 16;8:14049. doi: 10.1038/ncomms14049.
6
Induction of Expansion and Folding in Human Cerebral Organoids.
Cell Stem Cell. 2017 Mar 2;20(3):385-396.e3. doi: 10.1016/j.stem.2016.11.017. Epub 2016 Dec 29.
7
Extensive migration of young neurons into the infant human frontal lobe.
Science. 2016 Oct 7;354(6308). doi: 10.1126/science.aaf7073.
8
The promises and challenges of human brain organoids as models of neuropsychiatric disease.
Nat Med. 2016 Nov;22(11):1220-1228. doi: 10.1038/nm.4214. Epub 2016 Oct 26.
9
Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.
Cell Stem Cell. 2016 Aug 4;19(2):248-257. doi: 10.1016/j.stem.2016.07.005. Epub 2016 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验