Suppr超能文献

用于具有更高保真度和功能的神经类器官的生物工程创新。

Bioengineering innovations for neural organoids with enhanced fidelity and function.

作者信息

Sun Yubing, Ikeuchi Yoshiho, Guo Feng, Hyun Insoo, Ming Guo-Li, Fu Jianping

机构信息

Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA.

Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-8654, Japan.

出版信息

Cell Stem Cell. 2025 May 1;32(5):689-709. doi: 10.1016/j.stem.2025.03.014.

Abstract

Neural organoids have been utilized to recapitulate different aspects of the developing nervous system. While hailed as promising experimental tools for studying human neural development and neuropathology, current neural organoids do not fully recapitulate the anatomy or microcircuitry-level functionality of the developing brain, spinal cord, or peripheral nervous system. In this review, we discuss emerging bioengineering approaches that control morphogen signals and biophysical microenvironments, which have improved the efficiency, fidelity, and utility of neural organoids. Furthermore, advancements in bioengineered tools have facilitated more sophisticated analyses of neural organoid functions and applications, including improved neural-bioelectronic interfaces and organoid-based information processing. Emerging bioethical issues associated with advanced neural organoids are also discussed. Future opportunities of neural organoid research lie in enhancing their fidelity, maturity, and complexity and expanding their applications in a scalable manner.

摘要

神经类器官已被用于重现发育中神经系统的不同方面。尽管被誉为研究人类神经发育和神经病理学的有前景的实验工具,但目前的神经类器官并未完全重现发育中的脑、脊髓或周围神经系统的解剖结构或微电路水平的功能。在这篇综述中,我们讨论了控制形态发生素信号和生物物理微环境的新兴生物工程方法,这些方法提高了神经类器官的效率、保真度和实用性。此外,生物工程工具的进步促进了对神经类器官功能和应用的更复杂分析,包括改进的神经生物电子接口和基于类器官的信息处理。还讨论了与先进神经类器官相关的新兴生物伦理问题。神经类器官研究的未来机遇在于提高其保真度、成熟度和复杂性,并以可扩展的方式扩大其应用。

相似文献

1
Bioengineering innovations for neural organoids with enhanced fidelity and function.
Cell Stem Cell. 2025 May 1;32(5):689-709. doi: 10.1016/j.stem.2025.03.014.
2
Leptomeningeal Neural Organoid Fusions as Models to Study Meninges-Brain Signaling.
Stem Cells Dev. 2025 Apr;34(7-8):152-163. doi: 10.1089/scd.2024.0231. Epub 2025 Mar 24.
4
Unlocking the full potential of human pluripotent stem cell-derived kidney organoids through bioengineering.
Kidney Int. 2025 Jul;108(1):38-47. doi: 10.1016/j.kint.2025.01.043. Epub 2025 Apr 23.
8
Organoids as Sophisticated Tools for Renal Cancer Research: Extensive Applications and Promising Prospects.
Cell Mol Bioeng. 2024 Oct 15;17(6):527-548. doi: 10.1007/s12195-024-00825-y. eCollection 2024 Dec.
10
An Efficient Organoid Cutting Method for Long-Term Culture and High-Throughput Analyses.
Tissue Eng Regen Med. 2025 Jun 16. doi: 10.1007/s13770-025-00731-y.

本文引用的文献

1
Specification of human brain regions with orthogonal gradients of WNT and SHH in organoids reveals patterning variations across cell lines.
Cell Stem Cell. 2025 Jun 5;32(6):970-989.e11. doi: 10.1016/j.stem.2025.04.006. Epub 2025 May 1.
2
Vascular network-inspired diffusible scaffolds for engineering functional midbrain organoids.
Cell Stem Cell. 2025 May 1;32(5):824-837.e5. doi: 10.1016/j.stem.2025.02.010. Epub 2025 Mar 17.
3
Insulative Compression of Neuronal Tissues on Microelectrode Arrays by Perfluorodecalin Enhances Electrophysiological Measurements.
Adv Healthc Mater. 2025 Mar;14(6):e2403771. doi: 10.1002/adhm.202403771. Epub 2025 Jan 5.
4
Modelling human brain development and disease with organoids.
Nat Rev Mol Cell Biol. 2025 May;26(5):389-412. doi: 10.1038/s41580-024-00804-1. Epub 2024 Dec 12.
5
A framework for neural organoids, assembloids and transplantation studies.
Nature. 2025 Mar;639(8054):315-320. doi: 10.1038/s41586-024-08487-6. Epub 2024 Dec 9.
6
Generating human neural diversity with a multiplexed morphogen screen in organoids.
Cell Stem Cell. 2024 Dec 5;31(12):1831-1846.e9. doi: 10.1016/j.stem.2024.10.016.
7
An integrated transcriptomic cell atlas of human neural organoids.
Nature. 2024 Nov;635(8039):690-698. doi: 10.1038/s41586-024-08172-8. Epub 2024 Nov 20.
8
MEA-NAP: A flexible network analysis pipeline for neuronal 2D and 3D organoid multielectrode recordings.
Cell Rep Methods. 2024 Nov 18;4(11):100901. doi: 10.1016/j.crmeth.2024.100901. Epub 2024 Nov 8.
9
Assembloid models of cell-cell interaction to study tissue and disease biology.
Cell Stem Cell. 2024 Nov 7;31(11):1563-1573. doi: 10.1016/j.stem.2024.09.017. Epub 2024 Oct 24.
10
Cell type specification and diversity in subpallial organoids.
Front Genet. 2024 Sep 26;15:1440583. doi: 10.3389/fgene.2024.1440583. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验