Suppr超能文献

通过使用观察到的背景特征改进因子得分估计。

Improving Factor Score Estimation Through the Use of Observed Background Characteristics.

作者信息

Curran Patrick J, Cole Veronica, Bauer Daniel J, Hussong Andrea M, Gottfredson Nisha

机构信息

University of North Carolina at Chapel Hill.

出版信息

Struct Equ Modeling. 2016;23(6):827-844. doi: 10.1080/10705511.2016.1220839. Epub 2016 Sep 9.

Abstract

A challenge facing nearly all studies in the psychological sciences is how to best combine multiple items into a valid and reliable score to be used in subsequent modelling. The most ubiquitous method is to compute a mean of items, but more contemporary approaches use various forms of latent score estimation. Regardless of approach, outside of large-scale testing applications, scoring models rarely include background characteristics to improve score quality. The current paper used a Monte Carlo simulation design to study score quality for different psychometric models that did and did not include covariates across levels of sample size, number of items, and degree of measurement invariance. The inclusion of covariates improved score quality for nearly all design factors, and in no case did the covariates degrade score quality relative to not considering the influences at all. Results suggest that the inclusion of observed covariates can improve factor score estimation.

摘要

心理科学领域几乎所有研究都面临一个挑战,即如何最好地将多个项目组合成一个有效且可靠的分数,以便在后续建模中使用。最普遍的方法是计算项目的平均值,但更现代的方法使用各种形式的潜在分数估计。无论采用何种方法,在大规模测试应用之外,评分模型很少纳入背景特征来提高分数质量。本文采用蒙特卡罗模拟设计,研究了不同心理测量模型在样本量、项目数量和测量不变性程度等水平上纳入和未纳入协变量时的分数质量。纳入协变量几乎在所有设计因素上都提高了分数质量,而且在任何情况下,相对于完全不考虑这些影响,协变量都没有降低分数质量。结果表明,纳入观测到的协变量可以改善因子分数估计。

相似文献

1
Improving Factor Score Estimation Through the Use of Observed Background Characteristics.
Struct Equ Modeling. 2016;23(6):827-844. doi: 10.1080/10705511.2016.1220839. Epub 2016 Sep 9.
5
Sample Size Requirements for Applying Mixed Polytomous Item Response Models: Results of a Monte Carlo Simulation Study.
Front Psychol. 2019 Nov 13;10:2494. doi: 10.3389/fpsyg.2019.02494. eCollection 2019.
6
Estimation of Latent Variable Scores with Multiple Group Item Response Models: Implications for Integrative Data Analysis.
Struct Equ Modeling. 2020;27(6):931-941. doi: 10.1080/10705511.2020.1724113. Epub 2020 Feb 27.
10
Longitudinal measurement invariance and explanatory IRT models for adolescents' oral health-related quality of life.
Health Qual Life Outcomes. 2018 Apr 11;16(1):60. doi: 10.1186/s12955-018-0879-x.

引用本文的文献

2
A data integration method for new advances in development cognitive neuroscience.
Dev Cogn Neurosci. 2024 Dec;70:101475. doi: 10.1016/j.dcn.2024.101475. Epub 2024 Nov 9.
4
Practical Implications of Sum Scores Being Psychometrics' Greatest Accomplishment.
Psychometrika. 2024 Dec;89(4):1148-1169. doi: 10.1007/s11336-024-09988-z. Epub 2024 Jul 20.
6
Improving the Reliability of Cognitive Task Measures: A Narrative Review.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Aug;8(8):789-797. doi: 10.1016/j.bpsc.2023.02.004. Epub 2023 Feb 24.
8
Utilizing Moderated Non-linear Factor Analysis Models for Integrative Data Analysis: A Tutorial.
Struct Equ Modeling. 2023;30(1):149-164. doi: 10.1080/10705511.2022.2070753. Epub 2022 May 23.
9
Informing Harmonization Decisions in Integrative Data Analysis: Exploring the Measurement Multiverse.
Prev Sci. 2023 Nov;24(8):1595-1607. doi: 10.1007/s11121-022-01466-1. Epub 2022 Nov 28.
10
Psychometric properties of sum scores and factor scores differ even when their correlation is 0.98: A response to Widaman and Revelle.
Behav Res Methods. 2023 Dec;55(8):4269-4290. doi: 10.3758/s13428-022-02016-x. Epub 2022 Nov 17.

本文引用的文献

1
It Might Not Make a Big DIF: Improved Differential Test Functioning Statistics That Account for Sampling Variability.
Educ Psychol Meas. 2016 Feb;76(1):114-140. doi: 10.1177/0013164415584576. Epub 2015 Jun 29.
2
A more general model for testing measurement invariance and differential item functioning.
Psychol Methods. 2017 Sep;22(3):507-526. doi: 10.1037/met0000077. Epub 2016 Jun 6.
3
An Empirical Comparison Of The Similarity Of Principal Component, Image, And Factor Patterns.
Multivariate Behav Res. 1977 Jan 1;12(1):3-22. doi: 10.1207/s15327906mbr1201_1.
4
An Empirical Comparison of Factor, Image, Component, and Scale Scores.
Multivariate Behav Res. 1992 Jul 1;27(3):301-22. doi: 10.1207/s15327906mbr2703_1.
5
The Psychopathology of Factor Indeterminancy.
Multivariate Behav Res. 1996 Oct 1;31(4):571-7. doi: 10.1207/s15327906mbr3104_10.
7
How Do Propensity Score Methods Measure Up in the Presence of Measurement Error? A Monte Carlo Study.
Multivariate Behav Res. 2015;50(5):520-32. doi: 10.1080/00273171.2015.1022643. Epub 2015 Jul 24.
8
A Moderated Nonlinear Factor Model for the Development of Commensurate Measures in Integrative Data Analysis.
Multivariate Behav Res. 2014 Jun;49(3):214-231. doi: 10.1080/00273171.2014.889594.
10
Quantifying 'problematic' DIF within an IRT framework: application to a cancer stigma index.
Qual Life Res. 2015 Jan;24(1):95-103. doi: 10.1007/s11136-013-0540-4. Epub 2013 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验