Kush Joseph M, Masyn Katherine E, Amin-Esmaeili Masoumeh, Susukida Ryoko, Wilcox Holly C, Musci Rashelle J
Johns Hopkins Bloomberg School of Public Health.
Georgia State University School of Public Health.
Struct Equ Modeling. 2023;30(1):149-164. doi: 10.1080/10705511.2022.2070753. Epub 2022 May 23.
Integrative data analysis (IDA) is an analytic tool that allows researchers to combine raw data across multiple, independent studies, providing improved measurement of latent constructs as compared to single study analysis or meta-analyses. This is often achieved through implementation of moderated nonlinear factor analysis (MNLFA), an advanced modeling approach that allows for covariate moderation of item and factor parameters. The current paper provides an overview of this modeling technique, highlighting distinct advantages most apt for IDA. We further illustrate the complex modeling building process involved in MNLFA by providing a tutorial using empirical data from five separate prevention trials. The code and data used for analyses are also provided.
整合数据分析(IDA)是一种分析工具,它使研究人员能够整合来自多个独立研究的原始数据,与单一研究分析或元分析相比,能更好地测量潜在结构。这通常通过实施调节非线性因子分析(MNLFA)来实现,MNLFA是一种先进的建模方法,允许对项目和因子参数进行协变量调节。本文概述了这种建模技术,突出了最适合IDA的显著优势。我们通过使用来自五项独立预防试验的经验数据提供一个教程,进一步说明MNLFA中涉及的复杂建模构建过程。还提供了用于分析的代码和数据。