Bonomi Luca, Jiang Xiaoqian
University of California, San Diego, La Jolla, CA.
Proc Int Conf Data Eng. 2017 Apr;2017:1533-1540. doi: 10.1109/ICDE.2017.224. Epub 2017 May 18.
The study of patients in Intensive Care Units (ICUs) is a crucial task in critical care research which has significant implications both in identifying clinical risk factors and defining institutional guidances. The mortality study of ICU patients is of particular interest because it provides useful indications to healthcare institutions for improving patients experience, internal policies, and procedures (e.g. allocation of resources). To this end, many research works have been focused on the length of stay (LOS) for ICU patients as a feature for studying the mortality. In this work, we propose a novel mortality study based on the notion of burstiness, where the temporal information of patients longitudinal data is taken into consideration. The burstiness of temporal data is a popular measure in network analysis and time-series anomaly detection, where high values of burstiness indicate presence of rapidly occurring events in short time periods (i.e. burst). Our intuition is that these bursts may relate to possible complications in the patient's medical condition and hence provide indications on the mortality. Compared to the LOS, the burstiness parameter captures the temporality of the medical events providing information about the overall dynamic of the patients condition. To the best of our knowledge, we are the first to apply the burstiness measure in the clinical research domain. Our preliminary results on a real dataset show that patients with high values of burstiness tend to have higher mortality rate compared to patients with more regular medical events. Overall, our study shows promising results and provides useful insights for developing predictive models on temporal data and advancing modern critical care medicine.
对重症监护病房(ICU)患者的研究是重症监护研究中的一项关键任务,在识别临床风险因素和制定机构指南方面都具有重要意义。ICU患者的死亡率研究尤为重要,因为它能为医疗机构提供有用的指标,以改善患者体验、内部政策和程序(如资源分配)。为此,许多研究工作都聚焦于将ICU患者的住院时长(LOS)作为研究死亡率的一个特征。在这项工作中,我们基于突发性的概念提出了一种新颖的死亡率研究方法,其中考虑了患者纵向数据的时间信息。时间数据的突发性是网络分析和时间序列异常检测中一种常用的度量,突发性的高值表明在短时间内存在快速发生的事件(即突发)。我们的直觉是,这些突发可能与患者病情中可能出现的并发症有关,从而为死亡率提供指示。与住院时长相比,突发性参数捕捉了医疗事件的时间性,提供了有关患者病情整体动态的信息。据我们所知,我们是首个将突发性度量应用于临床研究领域的。我们在一个真实数据集上的初步结果表明,与医疗事件较为规律的患者相比,突发性值高的患者往往死亡率更高。总体而言,我们的研究显示出了有前景的结果,并为开发基于时间数据的预测模型和推动现代重症监护医学提供了有用的见解。