Department of Information Technology (INTEC), Ghent University - iMinds, Gaston Crommenlaan 8, B-9050 Ghent, Belgium.
Department of Information Technology (INTEC), Ghent University - iMinds, Gaston Crommenlaan 8, B-9050 Ghent, Belgium.
Artif Intell Med. 2015 Mar;63(3):191-207. doi: 10.1016/j.artmed.2014.12.009. Epub 2014 Dec 30.
The length of stay of critically ill patients in the intensive care unit (ICU) is an indication of patient ICU resource usage and varies considerably. Planning of postoperative ICU admissions is important as ICUs often have no nonoccupied beds available.
Estimation of the ICU bed availability for the next coming days is entirely based on clinical judgement by intensivists and therefore too inaccurate. For this reason, predictive models have much potential for improving planning for ICU patient admission.
Our goal is to develop and optimize models for patient survival and ICU length of stay (LOS) based on monitored ICU patient data. Furthermore, these models are compared on their use of sequential organ failure (SOFA) scores as well as underlying raw data as input features.
Different machine learning techniques are trained, using a 14,480 patient dataset, both on SOFA scores as well as their underlying raw data values from the first five days after admission, in order to predict (i) the patient LOS, and (ii) the patient mortality. Furthermore, to help physicians in assessing the prediction credibility, a probabilistic model is tailored to the output of our best-performing model, assigning a belief to each patient status prediction. A two-by-two grid is built, using the classification outputs of the mortality and prolonged stay predictors to improve the patient LOS regression models.
For predicting patient mortality and a prolonged stay, the best performing model is a support vector machine (SVM) with GA,D=65.9% (area under the curve (AUC) of 0.77) and GS,L=73.2% (AUC of 0.82). In terms of LOS regression, the best performing model is support vector regression, achieving a mean absolute error of 1.79 days and a median absolute error of 1.22 days for those patients surviving a nonprolonged stay.
Using a classification grid based on the predicted patient mortality and prolonged stay, allows more accurate modeling of the patient LOS. The detailed models allow to support the decisions made by physicians in an ICU setting.
危重症患者在重症监护病房(ICU)的停留时间是患者 ICU 资源使用情况的一个指标,且变化很大。规划术后 ICU 入院非常重要,因为 ICU 通常没有空闲床位。
对未来几天 ICU 床位可用性的估计完全基于重症监护医生的临床判断,因此准确性太低。出于这个原因,预测模型对于改善 ICU 患者入院规划具有很大的潜力。
我们的目标是基于监测的 ICU 患者数据,开发和优化用于患者存活和 ICU 住院时间(LOS)的模型。此外,还比较了这些模型在使用序贯器官衰竭(SOFA)评分以及基础原始数据作为输入特征方面的表现。
使用 14480 名患者的数据集,对不同的机器学习技术进行训练,这些技术既使用 SOFA 评分,也使用入院后前五天的基础原始数据值,以便预测(i)患者 LOS,和(ii)患者死亡率。此外,为了帮助医生评估预测可信度,为表现最佳的模型的输出量身定制了一个概率模型,为每个患者状态预测分配一个可信度。使用死亡率和延长住院时间预测器的分类输出构建了一个 2×2 的网格,以提高患者 LOS 回归模型的性能。
对于预测患者死亡率和延长住院时间,表现最佳的模型是支持向量机(SVM)与 GA,D=65.9%(AUC 为 0.77)和 GS,L=73.2%(AUC 为 0.82)。就 LOS 回归而言,表现最佳的模型是支持向量回归,对于存活且非延长住院时间的患者,平均绝对误差为 1.79 天,中位数绝对误差为 1.22 天。
使用基于预测患者死亡率和延长住院时间的分类网格,可以更准确地对患者 LOS 进行建模。详细的模型可以为 ICU 环境中的医生决策提供支持。