Suppr超能文献

利用闭环低温氦样品旋转的动态核极化来突破核磁共振灵敏度极限。

Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning.

作者信息

Bouleau E, Saint-Bonnet P, Mentink-Vigier F, Takahashi H, Jacquot J-F, Bardet M, Aussenac F, Purea A, Engelke F, Hediger S, Lee D, De Paëpe G

机构信息

Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France . Email:

CEA , INAC , F-38000 Grenoble , France.

出版信息

Chem Sci. 2015 Dec 1;6(12):6806-6812. doi: 10.1039/c5sc02819a. Epub 2015 Aug 26.

Abstract

We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool.

摘要

我们报告了一种将固态核磁共振灵敏度极限大幅提升至远超当前先进水平的策略。该方法依赖于动态核极化的应用,并在远低于100 K的样品温度下进行的实验中展现出前所未有的动态核极化增强因子,且可转化为6个数量级的实验时间节省。这一重大进展得益于使用低温氦气作为驱动魔角样品旋转(MAS)以进行动态核极化(DNP)增强核磁共振实验的气体。这些实验条件远远超越了目前的可能性,能够在进行实验时将样品温度降至30 K,同时实现更高的分辨率(得益于更快的旋转频率,高达25 kHz)以及高度极化的核自旋。这些显著的相关成果被用于使工业催化剂表面超极化以及使有机纳米组装体(在我们的案例中为自组装肽)超极化,对于这些体系,无法使用衍射技术解析其结构。可持续的低温氦气样品旋转显著拓展了MAS-DNP技术的领域和可能性,是将核磁共振转变为一种多功能且灵敏的原子级表征工具的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b29b/5508678/ba0a195d9e6a/c5sc02819a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验