Basque Center for Materials, Applications and Nanostructures (BCMaterials), Parque Tecnológico de Bizkaia, Building 500, Derio, Spain.
Nanoscale. 2017 Aug 10;9(31):11269-11278. doi: 10.1039/c7nr02389h.
We present a detailed study of the magnetic behavior of Permalloy (NiFe alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.
我们对具有小半径(30nm 和 70nm)和不同厚度(30nm 或 50nm)的坡莫合金(NiFe 合金)圆形纳米点的磁行为进行了详细研究。尽管这些点的尺寸很小,但测量的磁滞回线明显显示出具有零剩磁和在高磁场下呈瓣状的经典涡旋行为的特征。这是很显著的,因为磁涡旋核心的尺寸与点直径相当,这是由磁力显微镜和微磁模拟揭示的。点的基态接近涡旋稳定性的边界,并且取决于点的尺寸,磁化分布结合了典型涡旋、单畴状态的特征,甚至呈现出类似于磁斯格明子的特征。我们开发了一种用于解释观察到的行为的点磁化反转的解析模型,该模型考虑到了大的涡旋核尺寸,与实验结果相当吻合。这项研究扩展了对磁纳米点的理解,超越了经典涡旋概念(其中涡旋核自旋对磁行为的影响可以忽略不计),因此可以用于改进新兴的自旋电子应用,例如自旋扭矩纳米振荡器。它还限定了在亚 100nm 点中产生明确定义的涡旋配置的可行性,从而能够实现用于生物医学应用的细胞内磁机械致动。