a Interdisciplinary Center for Bioinformatics, University of Leipzig , Leipzig , Germany.
d Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig , Leipzig , Germany.
Epigenetics. 2017;12(10):886-896. doi: 10.1080/15592294.2017.1361090. Epub 2017 Oct 6.
In acute myeloid leukemia (AML) DNA hypermethylation of gene promoters is frequently observed and often correlates with a block of differentiation. Treatment of AML patients with DNA methyltransferase inhibitors results in global hypomethylation of genes and, thereby, can lead to a reactivation of the differentiation capability. Unfortunately, after termination of treatment both hypermethylation and differentiation block return in most cases. Here, we apply, for the first time, a computational model of epigenetic regulation of transcription to: i) provide a mechanistic understanding of the DNA (de-) methylation process in AML and; ii) improve DNA demethylation treatment strategies. By in silico simulation, we analyze promoter hypermethylation scenarios referring to DNMT dysfunction, decreased H3K4me3 and increased H3K27me3 modification activity, and accelerated cell proliferation. We quantify differences between these scenarios with respect to gene repression and activation. Moreover, we compare the scenarios regarding their response to DNMT inhibitor treatment alone and in combination with inhibitors of H3K27me3 histone methyltransferases and of H3K4me3 histone demethylases. We find that the different hypermethylation scenarios respond specifically to therapy, suggesting that failure of remission originates in patient-specific deregulation. We observe that inappropriate demethylation therapy can result even in enforced deregulation. As an example, our results suggest that application of high DNMT inhibitor concentration can induce unwanted global gene activation if hypermethylation originates in increased H3K27me3 modification. Our results underline the importance of a personalized therapy requiring knowledge about the patient-specific mechanism of epigenetic deregulation.
在急性髓细胞白血病 (AML) 中,基因启动子的 DNA 超甲基化经常观察到,并且通常与分化阻滞相关。用 DNA 甲基转移酶抑制剂治疗 AML 患者会导致基因的整体去甲基化,从而可以重新激活分化能力。不幸的是,在治疗终止后,大多数情况下会再次出现超甲基化和分化阻滞。在这里,我们首次应用转录的表观遗传调控的计算模型来:i)提供对 AML 中 DNA(去)甲基化过程的机制理解;ii)改善 DNA 去甲基化治疗策略。通过计算机模拟,我们分析了与 DNMT 功能障碍、H3K4me3 减少和 H3K27me3 修饰活性增加以及细胞增殖加速相关的启动子超甲基化场景。我们量化了这些场景在基因抑制和激活方面的差异。此外,我们比较了这些场景,比较了它们单独和联合使用 DNA 甲基转移酶抑制剂以及 H3K27me3 组蛋白甲基转移酶和 H3K4me3 组蛋白去甲基酶抑制剂的反应。我们发现,不同的超甲基化场景对治疗有特异性反应,这表明缓解失败源于患者特异性失调。我们观察到,不适当的去甲基化治疗甚至可能导致强制失调。例如,我们的结果表明,如果超甲基化源于 H3K27me3 修饰的增加,则应用高浓度的 DNA 甲基转移酶抑制剂可能会导致不必要的全局基因激活。我们的结果强调了个性化治疗的重要性,这需要了解患者特定的表观遗传失调机制。