Suppr超能文献

基于稀疏表示的多模态叶片振动监测叶尖定时测量中的频率检测与不确定性降低

Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring.

作者信息

Pan Minghao, Yang Yongmin, Guan Fengjiao, Hu Haifeng, Xu Hailong

机构信息

Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2017 Jul 30;17(8):1745. doi: 10.3390/s17081745.

Abstract

The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number.

摘要

在涡轮机械测试中,准确监测运行工况下叶片的振动至关重要。叶片尖端定时(BTT)是一种很有前景的用于测量叶片振动的非接触技术。然而,BTT采样数据本质上是欠采样的,并且受到多种测量不确定性的影响。如何通过处理这些欠采样的有偏信号来恢复叶片振动的频谱是一个瓶颈问题。本文提出了一种新的BTT信号处理方法,用于在多模叶片振动频谱恢复中减轻测量不确定性。该方法可分为四个阶段。首先,利用叶片振动信号在频谱上的稀疏性建立单测量向量模型。其次,研究非负稀疏解的唯一性以获得振动频谱。第三,对BTT测量不确定性的典型来源进行定量分析。最后,提出一种改进的振动频谱恢复方法,以便在测量结果有偏差时获得有保证水平的稀疏解。进行了仿真和实验以证明该方法的可行性。最突出的优点是,该方法无需增加探头数量就能防止恢复的多模振动频谱受到BTT测量不确定性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88e9/5579762/209105a74499/sensors-17-01745-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验