Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.
Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom.
Antimicrob Agents Chemother. 2017 Sep 22;61(10). doi: 10.1128/AAC.00707-17. Print 2017 Oct.
The aim of this study was to develop a population pharmacokinetic (PK) model for teicoplanin across childhood age ranges to be used as Bayesian prior information in the software constructed for individualized therapy. We developed a nonparametric population model fitted to PK data from neonates, infants, and older children. We then implemented this model in the BestDose multiple-model Bayesian adaptive control algorithm to show its clinical utility. It was used to predict the dosages required to achieve optimal teicoplanin predose targets (15 mg/liter) from day 3 of therapy. We performed individual simulations for an infant and a child from the original population, who provided early first dosing interval concentration-time data. An allometric model that used weight as a measure of size and that also incorporated renal function using the estimated glomerular filtration rate (eGFR), or the ratio of postnatal age (PNA) to serum creatinine concentration (SCr) for infants <3 months old, best described the data. The median population PK parameters were as follows: elimination rate constant (Ke) = 0.03 · (wt/70) · Renal (h); = 19.5 · (wt/70) (liters); Renal = eGFR (ml/min/1.73 m), or Renal = PNA/SCr (μmol/liter). Increased teicoplanin dosages and alternative administration techniques (extended infusions and fractionated multiple dosing) were required in order to achieve the targets safely by day 3 in simulated cases. The software was able to predict individual measured concentrations and the dosages and administration techniques required to achieve the desired target concentrations early in therapy. Prospective evaluation is now needed in order to ensure that this individualized teicoplanin therapy approach is applicable in the clinical setting. (This study has been registered in the European Union Clinical Trials Register under EudraCT no. 2012-005738-12.).
本研究旨在建立一个涵盖儿童年龄段的替考拉宁群体药代动力学(PK)模型,以便在为个体化治疗构建的软件中用作贝叶斯先验信息。我们建立了一个非参数群体模型,该模型适用于新生儿、婴儿和较大儿童的 PK 数据。然后,我们将该模型实施到 BestDose 多模型贝叶斯自适应控制算法中,以展示其临床实用性。该模型用于预测治疗第 3 天达到最佳替考拉宁预剂量目标(15mg/l)所需的剂量。我们对原始群体中的一名婴儿和一名儿童进行了个体模拟,他们提供了早期首次给药间隔的浓度-时间数据。一种以体重为大小度量的比例模型,以及一种使用估计的肾小球滤过率(eGFR)或新生儿后年龄(PNA)与血清肌酐浓度(SCr)之比来描述婴儿 <3 个月时肾功能的模型,最好地描述了数据。人群 PK 参数的中位数如下:消除速率常数(Ke)= 0.03·(体重/70)·肾(h);Vd = 19.5·(体重/70)(升);肾=eGFR(ml/min/1.73 m),或肾=PNA/SCr(μmol/l)。为了在模拟病例中在第 3 天安全地达到目标,需要增加替考拉宁剂量和替代给药技术(延长输注和分次多次给药)。该软件能够预测个体测量浓度以及在治疗早期达到所需目标浓度所需的剂量和给药技术。现在需要进行前瞻性评估,以确保这种个体化替考拉宁治疗方法在临床环境中适用。(本研究已在欧盟临床试验注册中心注册,注册号为 EudraCT no. 2012-005738-12。)。