Department of Chemistry, Indiana University, Bloomington, IN 47405.
Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7405-E7414. doi: 10.1073/pnas.1621349114. Epub 2017 Jul 31.
A series of M(PyED)·X (X = 2Cl, SO) pyridine-metalloenediyne complexes [M = Cu(II), Fe(II), or Zn(II)] and their independently synthesized, cyclized analogs have been prepared to investigate their potential as radical-generating DNA-damaging agents. All complexes possess a 1:1 metal-to-ligand stoichiometry as determined by electronic absorption spectroscopy and X-ray diffraction. Solution structural analysis reveals a pπ Cl [Formula: see text] Cu(II) LMCT (22,026 cm) for Cu(PyED)·2Cl, indicating three nitrogens and a chloride in the psuedo-equatorial plane with the remaining pyridine nitrogen and solvent in axial positions. EPR spectra of the Cu(II) complexes exhibit an axially elongated octahedron. This spectroscopic evidence, together with density functional theory computed geometries, suggest six-coordinate structures for Cu(II) and Fe(II) complexes and a five-coordinate environment for Zn(II) analogs. Bergman cyclization via thermal activation of these constructs yields benzannulated product indicative of diradical generation in all complexes within 3 h at 37 °C. A significant metal dependence on the rate of the reaction is observed [Cu(II) > Fe(II) > Zn(II)], which is mirrored in in vitro DNA-damaging outcomes. Whereas in situ chelation of PyED leads to considerable degradation in the presence of all metals within 1 h under hyperthermia conditions, Cu(II) activation produces >50% compromised DNA within 5 min. Additionally, Cu(II) chelated PyED outcompetes DNA polymerase I to successfully inhibit template strand extension. Exposure of HeLa cells to Cu(PyBD)·SO (IC = 10 μM) results in a G2/M arrest compared with untreated samples, indicating significant DNA damage. These results demonstrate metal-controlled radical generation for degradation of biopolymers under physiologically relevant temperatures on short timescales.
一系列 M(PyED)·X(X = 2Cl、SO)吡啶-金属二炔配合物[M = Cu(II)、Fe(II)或 Zn(II)]及其独立合成的环化类似物已被制备,以研究它们作为产生自由基的 DNA 损伤剂的潜力。所有配合物的电子吸收光谱和 X 射线衍射均确定为 1:1 金属-配体化学计量比。溶液结构分析表明 Cu(PyED)·2Cl 具有 pπ Cl [Formula: see text] Cu(II) LMCT(22,026 cm),表明三个氮原子和一个氯离子位于伪赤道平面中,其余吡啶氮原子和溶剂位于轴向位置。Cu(II) 配合物的 EPR 光谱表现出轴向拉长的八面体。这种光谱证据,连同密度泛函理论计算的几何形状,表明 Cu(II) 和 Fe(II) 配合物具有六配位结构,而 Zn(II) 类似物具有五配位环境。通过这些结构的热激活进行 Bergman 环化,在 37°C 下 3 小时内生成苯并稠合产物,表明所有配合物中均产生双自由基。观察到反应速率对金属有显著的依赖性[Cu(II) > Fe(II) > Zn(II)],这与体外 DNA 损伤结果一致。虽然在热疗条件下,所有金属在 1 小时内存在时都会导致 PyED 的原位螯合发生相当大的降解,但 Cu(II) 激活会导致超过 50%的 DNA 在 5 分钟内受损。此外,Cu(II) 螯合的 PyED 成功抑制模板链延伸,从而取代 DNA 聚合酶 I。HeLa 细胞暴露于 Cu(PyBD)·SO(IC = 10 μM)会导致 G2/M 期停滞,与未经处理的样品相比,表明存在明显的 DNA 损伤。这些结果表明,在生理相关温度下,在短时间内,金属控制自由基的产生可用于降解生物聚合物。