Suppr超能文献

原子层薄界面亚氧化物是提高封装在还原氧化石墨烯中的镁纳米颗粒储氢性能的关键。

Atomically Thin Interfacial Suboxide Key to Hydrogen Storage Performance Enhancements of Magnesium Nanoparticles Encapsulated in Reduced Graphene Oxide.

机构信息

The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

出版信息

Nano Lett. 2017 Sep 13;17(9):5540-5545. doi: 10.1021/acs.nanolett.7b02280. Epub 2017 Aug 3.

Abstract

As a model system for hydrogen storage, magnesium hydride exhibits high hydrogen storage density, yet its practical usage is hindered by necessarily high temperatures and slow kinetics for hydrogenation-dehydrogenation cycling. Decreasing particle size has been proposed to simultaneously improve the kinetics and decrease the sorption enthalpies. However, the associated increase in surface reactivity due to increased active surface area makes the material more susceptible to surface oxidation or other side reactions, which would hinder the overall hydrogenation-dehydrogenation process and diminish the capacity. Previous work has shown that the chemical stability of Mg nanoparticles can be greatly enhanced by using reduced graphene oxide as a protecting agent. Although no bulklike crystalline MgO layer has been clearly identified in this graphene-encapsulated/Mg nanocomposite, we propose that an atomically thin layer of honeycomb suboxide exists, based on first-principles interpretation of Mg K-edge X-ray absorption spectra. Density functional theory calculations reveal that in contrast to conventional expectations for thick oxides this interfacial oxidation layer permits H dissociation to the same degree as pristine Mg metal with the added benefit of enhancing the binding between reduced graphene oxide and the Mg nanoparticle, contributing to improved mechanical and chemical stability of the functioning nanocomposite.

摘要

作为储氢的模型体系,氢化镁具有较高的储氢密度,但由于其氢化脱氢循环所需的高温和缓慢的动力学,实际应用受到限制。减小颗粒尺寸被提议同时提高动力学和降低吸附焓。然而,由于活性表面积的增加导致的表面反应性的增加,使材料更容易受到表面氧化或其他副反应的影响,这将阻碍整体的氢化脱氢过程并降低容量。以前的工作表明,使用还原氧化石墨烯作为保护剂可以大大提高 Mg 纳米颗粒的化学稳定性。虽然在这种石墨烯封装/Mg 纳米复合材料中没有明确识别出块状结晶 MgO 层,但我们根据 Mg K 边 X 射线吸收光谱的第一性原理解释,提出存在原子层厚的蜂窝状亚氧化物。密度泛函理论计算表明,与厚氧化物的常规预期相反,这个界面氧化层允许 H 与原始 Mg 金属一样程度地离解,同时增加了还原氧化石墨烯和 Mg 纳米颗粒之间的结合,有助于提高功能纳米复合材料的机械和化学稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验