Laboratoire de Chimie de Coordination , UPR CNRS 8241, Toulouse 31077 Cedex, France.
ISM, UMR CNRS N 5255, Université de Bordeaux , Talence 33405 Cedex, France.
J Am Chem Soc. 2017 Aug 23;139(33):11610-11615. doi: 10.1021/jacs.7b06859. Epub 2017 Aug 11.
Non-noble metal nanoparticles are notoriously difficult to prepare and stabilize with appropriate dispersion, which in turn severely limits their catalytic functions. Here, using zeolitic imidazolate framework (ZIF-8) as MOF template, catalytically remarkably efficient ligand-free first-row late transition-metal nanoparticles are prepared and compared. Upon scrutiny of the catalytic principles in the hydrolysis of ammonia-borane, the highest total turnover frequency among these first-row late transition metals is achieved for the templated Ni nanoparticles with 85.7 mol mol min at room temperature, which overtakes performances of previous non-noble metal nanoparticles systems, and is even better than some noble metal nanoparticles systems. Mechanistic studies especially using kinetic isotope effects show that cleavage by oxidative addition of an O-H bond in HO is the rate-determining step in this reaction. Inspired by these mechanistic studies, an attractive and effective "on-off" control of hydrogen production is further proposed.
非贵金属纳米粒子很难制备且难以用合适的分散剂稳定,这反过来严重限制了它们的催化功能。在这里,我们使用沸石咪唑酯骨架(ZIF-8)作为 MOF 模板,制备并比较了催化性能显著的配体自由的第一过渡系后过渡金属纳米粒子。在详细研究了氨硼烷水解反应的催化原理后,在这些第一过渡系后过渡金属中,模板 Ni 纳米粒子的总周转频率最高,在室温下达到 85.7 mol mol min,超过了先前非贵金属纳米粒子体系的性能,甚至优于一些贵金属纳米粒子体系。特别是通过动力学同位素效应的机理研究表明,HO 中 O-H 键的氧化加成是该反应的速控步骤。受这些机理研究的启发,我们进一步提出了一种有吸引力和有效的“开-关”制氢控制方法。