Mekkering Martijn J, Laan Petrus C M, Troglia Alessandro, Bliem Roland, Kizilkaya Ali C, Rothenberg Gadi, Yan Ning
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands.
ACS Catal. 2024 Jun 17;14(13):9850-9859. doi: 10.1021/acscatal.4c01840. eCollection 2024 Jul 5.
We present here the synthesis and performance of dual-atom catalysts (DACs), analogous to well-known single-atom catalysts (SACs). DACs feature sites containing pairs of metal atoms and can outperform SACs due to their additional binding possibilities. Yet quantifying the improved catalytic activity in terms of proximity effects remains difficult, as it requires both high-resolution kinetic data and an understanding of the reaction pathways. Here, we use an automated bubble counter setup for comparing the catalytic performance of ceria-supported platinum SACs and DACs in ammonia borane hydrolysis. The catalysts were synthesized by wet impregnation and characterized using SEM, HAADF-STEM, XRD, XPS, and CO-DRIFTS. High-precision kinetic studies of ammonia borane hydrolysis in the presence of SACs show two temperature-dependent regions, with a transition point at 43 °C. Conversely, the DACs show only one regime. We show that this is because DACs preorganize both ammonia borane and water at the dual-atom active site. The additional proximal Pt atom improves the reaction rate 3-fold and enables faster reactions at lower temperatures. We suggest that the DACs enable the activation of the water-O-H bond as well as increase the hydrogen spillover effect due to the adjacent Pt site. Interestingly, using ammonia borane hydrolysis as a benchmark reaction gives further insight into hydrogen spillover mechanisms, above what is known from the CO oxidation studies.
我们在此展示双原子催化剂(DACs)的合成与性能,其类似于著名的单原子催化剂(SACs)。DACs具有包含成对金属原子的位点,并且由于其额外的结合可能性,性能可能优于SACs。然而,根据邻近效应来量化提高的催化活性仍然很困难,因为这需要高分辨率的动力学数据以及对反应途径的理解。在此,我们使用自动气泡计数器装置来比较二氧化铈负载的铂单原子催化剂和双原子催化剂在氨硼烷水解中的催化性能。通过湿浸渍法合成催化剂,并使用扫描电子显微镜(SEM)、高角度环形暗场扫描透射电子显微镜(HAADF-STEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和一氧化碳漫反射红外傅里叶变换光谱(CO-DRIFTS)对其进行表征。在单原子催化剂存在下对氨硼烷水解进行的高精度动力学研究显示出两个与温度相关的区域,转变点在43℃。相反,双原子催化剂仅显示一种状态。我们表明这是因为双原子催化剂在双原子活性位点预组织了氨硼烷和水。额外的近端铂原子使反应速率提高了3倍,并能在较低温度下实现更快的反应。我们认为双原子催化剂能够激活水的O-H键,并由于相邻的铂位点增加氢溢流效应。有趣的是,以氨硼烷水解作为基准反应能进一步深入了解氢溢流机制,这超出了一氧化碳氧化研究已知的范围。