Suppr超能文献

从结构磁共振成像中识别脑损伤的相关生物标志物:在单侧脑瘫儿童中使用自动化方法进行验证。

Identifying relevant biomarkers of brain injury from structural MRI: Validation using automated approaches in children with unilateral cerebral palsy.

作者信息

Pagnozzi Alex M, Dowson Nicholas, Doecke James, Fiori Simona, Bradley Andrew P, Boyd Roslyn N, Rose Stephen

机构信息

CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia.

The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.

出版信息

PLoS One. 2017 Aug 1;12(8):e0181605. doi: 10.1371/journal.pone.0181605. eCollection 2017.

Abstract

Previous studies have proposed that the early elucidation of brain injury from structural Magnetic Resonance Images (sMRI) is critical for the clinical assessment of children with cerebral palsy (CP). Although distinct aetiologies, including cortical maldevelopments, white and grey matter lesions and ventricular enlargement, have been categorised, these injuries are commonly only assessed in a qualitative fashion. As a result, sMRI remains relatively underexploited for clinical assessments, despite its widespread use. In this study, several automated and validated techniques to automatically quantify these three classes of injury were generated in a large cohort of children (n = 139) aged 5-17, including 95 children diagnosed with unilateral CP. Using a feature selection approach on a training data set (n = 97) to find severity of injury biomarkers predictive of clinical function (motor, cognitive, communicative and visual function), cortical shape and regional lesion burden were most often chosen associated with clinical function. Validating the best models on the unseen test data (n = 42), correlation values ranged between 0.545 and 0.795 (p<0.008), indicating significant associations with clinical function. The measured prevalence of injury, including ventricular enlargement (70%), white and grey matter lesions (55%) and cortical malformations (30%), were similar to the prevalence observed in other cohorts of children with unilateral CP. These findings support the early characterisation of injury from sMRI into previously defined aetiologies as part of standard clinical assessment. Furthermore, the strong and significant association between quantifications of injury observed on structural MRI and multiple clinical scores accord with empirically established structure-function relationships.

摘要

先前的研究表明,从结构磁共振成像(sMRI)中早期明确脑损伤对于脑瘫(CP)患儿的临床评估至关重要。尽管已对包括皮质发育异常、白质和灰质病变以及脑室扩大在内的不同病因进行了分类,但这些损伤通常仅以定性方式进行评估。因此,尽管sMRI已广泛应用,但其在临床评估中的应用仍相对不足。在本研究中,针对一大群年龄在5至17岁的儿童(n = 139),包括95名被诊断为单侧脑瘫的儿童,生成了几种自动且经过验证的技术来自动量化这三类损伤。通过对训练数据集(n = 97)采用特征选择方法来寻找可预测临床功能(运动、认知、交流和视觉功能)的损伤生物标志物的严重程度,发现皮质形状和区域病变负担最常被选作与临床功能相关的因素。在未见过的测试数据(n = 42)上对最佳模型进行验证,相关值在0.545至0.795之间(p<0.008),表明与临床功能存在显著关联。所测量的损伤患病率,包括脑室扩大(70%)、白质和灰质病变(55%)以及皮质畸形(30%),与在其他单侧脑瘫儿童队列中观察到的患病率相似。这些发现支持将sMRI损伤早期特征化为先前定义的病因,作为标准临床评估的一部分。此外,在结构MRI上观察到的损伤量化与多个临床评分之间的强而显著的关联符合根据经验确立的结构 - 功能关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3e4/5538741/c3b72fb7799e/pone.0181605.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验