Suppr超能文献

脂质 CCS:高精度预测脂质碰撞截面值以支持基于离子淌度-质谱的脂质组学。

LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility-Mass Spectrometry-Based Lipidomics.

机构信息

Interdisciplinary Research Center on Biology and Chemistry, and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, P. R. China.

University of Chinese Academy of Sciences , Beijing 100049, P. R. China.

出版信息

Anal Chem. 2017 Sep 5;89(17):9559-9566. doi: 10.1021/acs.analchem.7b02625. Epub 2017 Aug 15.

Abstract

The use of collision cross-section (CCS) values derived from ion mobility-mass spectrometry (IM-MS) has been proven to facilitate lipid identifications. Its utility is restricted by the limited availability of CCS values. Recently, the machine-learning algorithm-based prediction (e.g., MetCCS) is reported to generate CCS values in a large-scale. However, the prediction precision is not sufficient to differentiate lipids due to their high structural similarities and subtle differences on CCS values. To address this challenge, we developed a new approach, namely, LipidCCS, to precisely predict lipid CCS values. In LipidCCS, a set of molecular descriptors were optimized using bioinformatic approaches to comprehensively describe the subtle structure differences for lipids. The use of optimized molecular descriptors together with a large set of standard CCS values for lipids (458 in total) to build the prediction model significantly improved the precision. The prediction precision of LipidCCS was externally validated with median relative errors (MRE) of ∼1% using independent data sets across different instruments (Agilent DTIM-MS and Waters TWIM-MS) and laboratories. We also demonstrated that the improved precision in the predicted LipidCCS database (15 646 lipids and 63 434 CCS values in total) could effectively reduce false-positive identifications of lipids. Common users can freely access our LipidCCS web server for the following: (1) the prediction of lipid CCS values directly from SMILES structure; (2) database search; and (3) lipid match and identification. We believe LipidCCS will be a valuable tool to support IM-MS-based lipidomics. The web server is freely available on the Internet ( http://www.metabolomics-shanghai.org/LipidCCS/ ).

摘要

利用离子淌度-质谱(IM-MS)得出的碰撞截面(CCS)值已被证明有助于脂质鉴定。但其应用受到CCS 值有限可用性的限制。最近,基于机器学习算法的预测(例如 MetCCS)被报道可以大规模生成 CCS 值。然而,由于脂质具有高度相似的结构和 CCS 值上的细微差异,预测精度不足以区分脂质。为了解决这一挑战,我们开发了一种新方法,即 LipidCCS,以精确预测脂质的 CCS 值。在 LipidCCS 中,使用生物信息学方法优化了一组分子描述符,以全面描述脂质的细微结构差异。使用优化的分子描述符以及大量标准脂质 CCS 值(总计 458 个)构建预测模型,显著提高了精度。使用来自不同仪器(安捷伦 DTIM-MS 和沃特世 TWIM-MS)和实验室的独立数据集进行外部验证,LipidCCS 的预测精度表现为中位数相对误差(MRE)约为 1%。我们还证明了在预测的 LipidCCS 数据库(总计 15646 种脂质和 63434 个 CCS 值)中,精度的提高可以有效地减少脂质的假阳性鉴定。普通用户可以免费访问我们的 LipidCCS 网络服务器,用于以下方面:(1)直接从 SMILES 结构预测脂质 CCS 值;(2)数据库搜索;(3)脂质匹配和鉴定。我们相信 LipidCCS 将成为支持基于 IM-MS 的脂质组学的有价值工具。该网络服务器可在互联网上免费访问(http://www.metabolomics-shanghai.org/LipidCCS/)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验