Suppr超能文献

MetCCS 预测器:一个用于预测基于离子淌度质谱代谢组学中代谢物碰撞截面值的网络服务器。

MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics.

机构信息

Interdisciplinary Research Center on Biology and Chemistry, and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People's Republic of China.

出版信息

Bioinformatics. 2017 Jul 15;33(14):2235-2237. doi: 10.1093/bioinformatics/btx140.

Abstract

SUMMARY

In metabolomics, rigorous structural identification of metabolites presents a challenge for bioinformatics. The use of collision cross-section (CCS) values of metabolites derived from ion mobility-mass spectrometry effectively increases the confidence of metabolite identification, but this technique suffers from the limit number of available CCS values. Currently, there is no software available for rapidly generating the metabolites' CCS values. Here, we developed the first web server, namely, MetCCS Predictor, for predicting CCS values. It can predict the CCS values of metabolites using molecular descriptors within a few seconds. Common users with limited background on bioinformatics can benefit from this software and effectively improve the metabolite identification in metabolomics.

AVAILABILITY AND IMPLEMENTATION

The web server is freely available at: http://www.metabolomics-shanghai.org/MetCCS/ .

CONTACT

jiangzhu@sioc.ac.cn.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

在代谢组学中,对代谢物进行严格的结构鉴定对生物信息学提出了挑战。使用离子淌度-质谱衍生的代谢物的碰撞截面(CCS)值可有效提高代谢物鉴定的可信度,但该技术受到可用 CCS 值数量的限制。目前,尚无用于快速生成代谢物 CCS 值的软件。在这里,我们开发了第一个网络服务器,即 MetCCS Predictor,用于预测 CCS 值。它可以在几秒钟内使用分子描述符预测代谢物的 CCS 值。具有有限生物信息学背景的普通用户可以从该软件中受益,并有效地提高代谢组学中的代谢物鉴定能力。

可用性和实施

该网络服务器可免费使用:http://www.metabolomics-shanghai.org/MetCCS/

联系方式

jiangzhu@sioc.ac.cn

补充信息

补充数据可在“Bioinformatics”在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验