Nath Artika P, Ritchie Scott C, Byars Sean G, Fearnley Liam G, Havulinna Aki S, Joensuu Anni, Kangas Antti J, Soininen Pasi, Wennerström Annika, Milani Lili, Metspalu Andres, Männistö Satu, Würtz Peter, Kettunen Johannes, Raitoharju Emma, Kähönen Mika, Juonala Markus, Palotie Aarno, Ala-Korpela Mika, Ripatti Samuli, Lehtimäki Terho, Abraham Gad, Raitakari Olli, Salomaa Veikko, Perola Markus, Inouye Michael
Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia.
Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
Genome Biol. 2017 Aug 1;18(1):146. doi: 10.1186/s13059-017-1279-y.
Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up.
We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus.
This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
免疫代谢在许多心脏代谢疾病中起着核心作用。然而,目前仍缺乏关于循环人类细胞中免疫相关基因网络、它们与代谢物的相互作用及其遗传控制的详尽图谱。在此,我们整合了来自两个基于人群的队列(总计N = 2168)的血液转录组学、代谢组学和基因组图谱,其中包括一部分在7年随访时有匹配多组学数据的个体。
我们识别出拓扑结构可重复的基因网络,这些网络富含多种免疫功能,包括细胞毒性、病毒反应、B细胞、血小板、中性粒细胞以及肥大细胞/嗜碱性粒细胞活性。这些免疫基因模块与158种循环代谢物呈现出复杂的关联模式,这些代谢物包括脂蛋白亚类、脂质、脂肪酸、氨基酸、小分子和C反应蛋白。全基因组扫描模块表达定量性状位点(mQTL),发现有五个模块的mQTL具有顺式和反式效应。最强的mQTL位于ARHGEF3(rs1354034),并影响一个富含血小板功能的模块,且与血小板计数无关。肥大细胞/嗜碱性粒细胞和中性粒细胞功能模块在7年随访期间显示出随时间稳定的代谢物关联,这表明这些模块及其组成基因产物可能在代谢性炎症中起核心作用。此外,ARHGEF3中最强的mQTL也表现出明显的时间稳定性,支持该位点广泛的反式效应。
本研究提供了血液免疫代谢界面自然变异及其遗传基础的详细图谱,并可能有助于后续研究解释心脏代谢疾病的个体间差异。