Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
University of Michigan, Nuclear Engineering Department, Ann Arbor, MI, 48109, USA.
Sci Rep. 2017 Aug 1;7(1):7015. doi: 10.1038/s41598-017-07173-0.
Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions.
当涉及到理解天体物理物体到聚变等离子体等系统中的热输运、流体动力学演化和能量平衡时,热导率是物质最重要的物理性质之一。在暖稠密物质状态下,实验数据非常稀缺,因此许多理论模型仍未经过测试。在这里,我们使用最近开发的差分加热平台,首次测量了 0.5-2.7 g/cc 和 2-10 eV 下的铝的热导率。质子加热在 Au/Al 双层靶中产生温度梯度,随后通过两个同时的时间分辨诊断检测来自较热的 Au 到 Al 后表面的热流。系统的数据组可用于约束热导率和状态方程模型。使用 Purgatorio 模型或 Sesame S27314 进行 Al 热导率模拟,使用 LEOS 进行 Au/Al 释放状态方程模拟,与 15 ps 后的数据吻合较好。在 0-15 ps 的早期仍存在差异,可能是由于非平衡条件。