Pramanik Prativa, Thota Subhash, Singh Sobhit, Joshi Deep Chandra, Weise Bruno, Waske Anja, Seehra M S
Department of Physics, Indian Institute of Technology, Guwahati-781039, Assam, India.
J Phys Condens Matter. 2017 Oct 25;29(42):425803. doi: 10.1088/1361-648X/aa839d. Epub 2017 Aug 2.
Reported here are the results and their analysis from our detailed investigations of the effects of Cu doping ([Formula: see text]) on the electronic structure and magnetic properties of the spinel [Formula: see text]O. A detailed comparison is given for the [Formula: see text] and [Formula: see text] cases for both the bulk-like samples and nanoparticles. The electronic structure determined from x-ray photoelectron spectroscopy and Rietveld analysis of x-ray diffraction patterns shows the structure to be: ([Formula: see text]) [Formula: see text] [Formula: see text] [Formula: see text]] [Formula: see text] i.e. [Formula: see text] substitutes for [Formula: see text] on the octahedral B-sites. For the bulk samples, the ferrimagnetic [Formula: see text] K for [Formula: see text] is lowered to [Formula: see text] K for the [Formula: see text] sample, this decrease being due to the effect of Cu doping. For the nanosize [Formula: see text] ([Formula: see text]) sample, the lower [Formula: see text] K ([Formula: see text] K) is observed using [Formula: see text] analysis, this lowering being due to finite size effects. For [Formula: see text], fits of dc paramagnetic susceptibility data of [Formula: see text] versus T in nanosize samples to the Néel expression are used to determine the exchange interactions between the A and B sites with exchange constants: [Formula: see text] K (4.1 K), [Formula: see text] K (16.3 K) and [Formula: see text] K (13.8 K) for [Formula: see text]. The temperature dependence of ac susceptibilities [Formula: see text] and [Formula: see text] at different frequencies shows that in bulk samples of [Formula: see text] and [Formula: see text], the transition at T is the normal second order transition. But for the nanosize [Formula: see text] and 0.2 samples, analysis of the ac susceptibilities shows that the ferrimagnetic transition at T is followed by a re-entrant spin-glass transition at lower temperatures [Formula: see text] K (138 K) for [Formula: see text] ([Formula: see text]). Analysis of the ac susceptibilities, [Formula: see text] and [Formula: see text], versus T data is done in terms of two scaling laws: (i) Vogel-Fulcher law [Formula: see text] [Formula: see text]; and (ii) power law of critical slowing-down [Formula: see text]. These fits confirm the existence of glassy behavior below T with the parameters [Formula: see text] (8.91), [Formula: see text] (9.6 × 10[Formula: see text]) and [Formula: see text] K (∼138 K) for the samples [Formula: see text] (0.2), with similar results obtained for other samples. The linear behavior of the peak maximum in [Formula: see text] versus [Formula: see text] (AT-line) further supports the existence of glassy states in nanosize samples. For [Formula: see text], the temperature and composition dependence of the hysteresis loop parameters are investigated; all the samples with x ⩾ 0.1 have the coercivity H and remanence [Formula: see text]. Since the results reported here in these nanostructures are significantly different from those in bulk [Formula: see text] [Formula: see text], further investigations of their magnetic structures using neutron diffraction are warranted.
本文报道了我们对铜掺杂([化学式:见原文])对尖晶石[化学式:见原文]O的电子结构和磁性影响的详细研究结果及其分析。对块状样品和纳米颗粒的[化学式:见原文]和[化学式:见原文]情况进行了详细比较。通过X射线光电子能谱和X射线衍射图谱的Rietveld分析确定的电子结构表明其结构为:([化学式:见原文])[化学式:见原文][化学式:见原文][化学式:见原文]] [化学式:见原文],即[化学式:见原文]在八面体B位替代[化学式:见原文]。对于块状样品,[化学式:见原文]的亚铁磁性居里温度[化学式:见原文]K对于[化学式:见原文]样品降低到[化学式:见原文]K,这种降低是由于铜掺杂的影响。对于纳米尺寸的[化学式:见原文]([化学式:见原文])样品,使用[化学式:见原文]分析观察到较低的[化学式:见原文]K([化学式:见原文]K),这种降低是由于有限尺寸效应。对于[化学式:见原文],纳米尺寸样品中[化学式:见原文]的直流顺磁磁化率数据与T的拟合采用奈尔表达式来确定A和B位之间的交换相互作用,交换常数为:[化学式:见原文]K(4.1 K)、[化学式:见原文]K(16.3 K)和[化学式:见原文]K(13.8 K)对于[化学式:见原文]。不同频率下交流磁化率[化学式:见原文]和[化学式:见原文]的温度依赖性表明,在[化学式:见原文]和[化学式:见原文]的块状样品中,T处的转变是正常的二级转变。但对于纳米尺寸的[化学式:见原文]和0.2样品,交流磁化率分析表明,T处的亚铁磁转变之后在较低温度下出现再入自旋玻璃转变[化学式:见原文]K(138 K)对于[化学式:见原文]([化学式:见原文])。对交流磁化率[化学式:见原文]、[化学式:见原文]与T数据的分析依据两个标度律进行:(i)Vogel - Fulcher律[化学式:见原文][化学式:见原文];以及(ii)临界慢化的幂律[化学式:见原文]。这些拟合证实了在T以下存在玻璃态行为,对于样品[化学式:见原文](0.2),参数为[化学式:见原文](8.91)、[化学式:见原文](9.6 × 10[化学式:见原文])和[化学式:见原文]K(约138 K),其他样品也得到类似结果。[化学式:见原文]中峰值最大值与[化学式:见原文](AT线)的线性关系进一步支持了纳米尺寸样品中玻璃态的存在。对于[化学式:见原文],研究了磁滞回线参数的温度和成分依赖性;所有x⩾0.1的样品都有矫顽力H和剩磁[化学式:见原文]。由于这些纳米结构中报道的结果与块状[化学式:见原文][化学式:见原文]中的结果有显著差异,因此有必要使用中子衍射对其磁结构进行进一步研究。