Muthuselvam I Panneer, Nehru Raja, Babu K Ramesh, Saranya K, Kaul S N, Chen Shen-Ming, Chen Wei-Tin, Liu Yanwen, Guo Guang-Yu, Xiu Faxian, Sankar R
Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, Tamil Nadu, India. Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan, Republic of China. Institute of Physics, Academia Sinica, Taipei 10617, Taiwan, Republic of China.
J Phys Condens Matter. 2019 Jul 17;31(28):285802. doi: 10.1088/1361-648X/ab1570. Epub 2019 Apr 2.
We report high-precision magnetization ([Formula: see text]), magnetic susceptibility ([Formula: see text]), specific heat (C (T, H)) and 'zero-field' electrical resistivity, [Formula: see text], data taken on GdTe single crystal over wide ranges of temperature and magnetic field (H), with either [Formula: see text]-axis or [Formula: see text]-plane. [Formula: see text] and [Formula: see text] unambiguously establish that the b-axis is the easy direction of magnetization whereas any direction in the ac-plane is a hard direction. The [Formula: see text]-type anomaly in 'zero-field' specific heat, C (T, H = 0), and an abrupt drop in [Formula: see text] (characteristic of the paramagnetic (PM) - antiferromagnetic (AFM) phase transition) are observed at the Néel temperature, [Formula: see text] K. [Formula: see text] and C (T,H) clearly demonstrate that [Formula: see text] shifts to lower temperatures with increasing H irrespective of whether H points in the easy or hard direction. When [Formula: see text], the [Formula: see text] isotherms at temperatures in the range 2.5 K [Formula: see text] [Formula: see text] K reveal the existence of a field-induced spin-flop (SF) transition at fields 4.0 T [Formula: see text] [Formula: see text] [Formula: see text] 4.5 T. The first principles electronic band structure and density of states calculations, based on the density functional theory, correctly predict an AFM ground state (stabilized primarily by the 4f Gd - 5p Te- 4f Gd superexchange interactions) and the observed semi-metallic behavior for the GdTe compound. Moreover, these calculations yield the values [Formula: see text] [Formula: see text] for the ordered magnetic moment per Gd atom at T = 0, [Formula: see text] mJ mol K for the Sommerfeld coefficient for the electronic specific heat contribution and [Formula: see text] K for the Curie-Weiss temperature, respectively. These theoretical estimates conform well with the corresponding experimental values [Formula: see text] [Formula: see text], [Formula: see text] mJ mol K and [Formula: see text] K.
我们报告了在GdTe单晶上,在宽温度范围和磁场(H)下,沿c轴或ac平面测量的高精度磁化强度([公式:见正文])、磁化率([公式:见正文])、比热(C(T, H))和“零场”电阻率[公式:见正文]的数据。[公式:见正文]和[公式:见正文]明确确定b轴是易磁化方向,而ac平面内的任何方向都是难磁化方向。在奈尔温度[公式:见正文]K处,观察到“零场”比热C(T, H = 0)中的[公式:见正文]型异常以及[公式:见正文]的突然下降(这是顺磁(PM)-反铁磁(AFM)相变的特征)。[公式:见正文]和C(T, H)清楚地表明,无论H指向易磁化方向还是难磁化方向,[公式:见正文]都随着H的增加而向更低温度移动。当[公式:见正文]时,在2.5 K[公式:见正文][公式:见正文]K温度范围内的[公式:见正文]等温线揭示了在4.0 T[公式:见正文][公式:见正文][公式:见正文]4.5 T磁场下存在场致自旋翻转(SF)转变。基于密度泛函理论的第一性原理电子能带结构和态密度计算,正确地预测了AFM基态(主要由4f Gd-5p Te-4f Gd超交换相互作用稳定)以及GdTe化合物观察到的半金属行为。此外,这些计算分别给出了T = 0时每个Gd原子的有序磁矩值[公式:见正文][公式:见正文]、电子比热贡献的索末菲系数为[公式:见正文]mJ mol K和居里-外斯温度为[公式:见正文]K。这些理论估计与相应的实验值[公式:见正文][公式:见正文]、[公式:见正文]mJ mol K和[公式:见正文]K非常吻合。