Suppr超能文献

蛋白质激酶公共化学基因组数据集的进展及征稿启事

Progress towards a public chemogenomic set for protein kinases and a call for contributions.

作者信息

Drewry David H, Wells Carrow I, Andrews David M, Angell Richard, Al-Ali Hassan, Axtman Alison D, Capuzzi Stephen J, Elkins Jonathan M, Ettmayer Peter, Frederiksen Mathias, Gileadi Opher, Gray Nathanael, Hooper Alice, Knapp Stefan, Laufer Stefan, Luecking Ulrich, Michaelides Michael, Müller Susanne, Muratov Eugene, Denny R Aldrin, Saikatendu Kumar S, Treiber Daniel K, Zuercher William J, Willson Timothy M

机构信息

Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

AstraZeneca, Darwin Building, Cambridge Science Park, Cambridge, United Kingdom.

出版信息

PLoS One. 2017 Aug 2;12(8):e0181585. doi: 10.1371/journal.pone.0181585. eCollection 2017.

Abstract

Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases.

摘要

蛋白激酶是药物研发中极易处理的靶点。然而,500多种人类蛋白激酶中大多数的生物学功能和治疗潜力仍不为人知。我们已经开发了小分子抑制剂的实体和虚拟集合,我们称之为化学基因组集,其设计目的是抑制近一半人类蛋白激酶的催化功能。在本手稿中,我们分享了在生成全面的激酶化学基因组集(KCGS)方面取得的进展,公布了一个大型抑制剂集(已发表激酶抑制剂集2(PKIS2))的激酶组分析数据,并概述了一个过程,通过该过程,科学界可以公开合作创建一个能够探究人类蛋白激酶完整互补情况的KCGS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df65/5540273/e4b05d9633cb/pone.0181585.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验