van Kann Elisabeth, Cozzi Bruno, Hof Patrick R, Oelschläger Helmut H A
Department of Anatomy III (Dr. Senckenbergische Anatomie), Medical Faculty, Johann Wolfgang Goethe University, Frankfurt, Germany.
Brain Behav Evol. 2017;90(3):193-210. doi: 10.1159/000477431. Epub 2017 Jul 29.
The present study focuses on the relationship between neocortical structures and functional aspects in three selected mammalian species. Our aim was to compare cortical layering and neuron density in the projection areas (somatomotor, M1; somatosensory, S1; auditory, A1; and visual, V1; each in a wider sense). Morphological and design-based stereological analysis was performed in the wild boar (Sus scrofa scrofa) as a representative terrestrial hoofed animal (artiodactyl) and the common dolphin (Delphinus delphis) as a highly derived related aquatic mammal (cetartiodactyl). For comparison, we included the human (Homo sapiens) as a well-documented anthropoid primate. In the cortex of many mammals, layer IV (inner granular layer) is the main target of specific thalamocortical inputs while layers III and V are the main origins of neocortical projections. Because the fourth layer is indistinct or mostly lacking in the primary neocortex of the wild boar and dolphins, respectively, we analyzed the adjacent layers III and V in these animals. In the human, all the three layers were investigated separately. The stereological data show comparatively low neuron densities in all areas of the wild boar and high cell counts in the human (as expected), particularly in the primary visual cortex. The common dolphin, in general, holds an intermediate position in terms of neuron density but exhibits higher values than the human in a few layers. With respect to the situation in the wild boar, stereological neuron counts in the dolphin are consistently higher, with a maximum in layer III of the visual cortex. The extended auditory neocortical field in dolphins and the hypertrophic auditory pathway indicate secondary neurobiological adaptations to their aquatic habitat during evolution. The wild boar, however, an omnivorous quadruped terrestrial mammal, shows striking specializations as to the sensorimotor neurobiology of the snout region.
本研究聚焦于三种选定哺乳动物物种的新皮质结构与功能方面的关系。我们的目的是比较投射区域(躯体运动区,M1;躯体感觉区,S1;听觉区,A1;视觉区,V1;均为广义上的区域)的皮质分层和神经元密度。对野猪(Sus scrofa scrofa)这一典型的陆生有蹄类动物(偶蹄目)和普通海豚(Delphinus delphis)这一高度特化的相关水生哺乳动物(鲸偶蹄目)进行了形态学和基于设计的体视学分析。为作比较,我们纳入了人类(智人)这一有充分文献记载的类人猿灵长类动物。在许多哺乳动物的皮质中,第IV层(内颗粒层)是特定丘脑皮质输入的主要靶点,而第III层和第V层是新皮质投射的主要起源。由于野猪和海豚的初级新皮质中第IV层分别不明显或基本缺失,我们分析了这些动物相邻的第III层和第V层。在人类中,对这三层分别进行了研究。体视学数据显示,野猪所有区域的神经元密度相对较低,而人类(正如预期的那样)细胞数量较多,尤其是在初级视觉皮质。总体而言,普通海豚在神经元密度方面处于中间位置,但在几层中显示出比人类更高的值。相对于野猪的情况,海豚的体视学神经元计数始终较高,在视觉皮质的第III层达到最大值。海豚扩展的听觉新皮质区域和肥大的听觉通路表明在进化过程中对其水生栖息地的二级神经生物学适应。然而,野猪作为一种杂食性四足陆生哺乳动物,在口鼻部区域的感觉运动神经生物学方面表现出显著的特化。