Suppr超能文献

人类 V1 中处理模块的神经元组成:神经元和非神经元群体的层密度,并与猕猴进行比较。

Neuronal composition of processing modules in human V1: laminar density for neuronal and non-neuronal populations and a comparison with macaque.

机构信息

York College, City University of New York, Jamaica, NY 11451, United States.

Center for Neural Science, New York University, New York City, NY 10003, United States.

出版信息

Cereb Cortex. 2024 Jan 31;34(2). doi: 10.1093/cercor/bhad512.

Abstract

The neuronal composition of homologous brain regions in different primates is important for understanding their processing capacities. Primary visual cortex (V1) has been widely studied in different members of the catarrhines. Neuronal density is considered to be central in defining the structure-function relationship. In human, there are large variations in the reported neuronal density from prior studies. We found the neuronal density in human V1 was 79,000 neurons/mm3, which is 35% of the neuronal density previously determined in macaque V1. Laminar density was proportionally similar between human and macaque. In V1, the ocular dominance column (ODC) contains the circuits for the emergence of orientation preference and spatial processing of a point image in many mammalian species. Analysis of the total neurons in an ODC and of the full number of neurons in macular vision (the central 15°) indicates that humans have 1.3× more neurons than macaques even though the density of neurons in macaque is 3× the density in human V1. We propose that the number of neurons in a functional processing unit rather than the number of neurons under a mm2 of cortex is more appropriate for cortical comparisons across species.

摘要

不同灵长类动物同源脑区的神经元组成对于理解其处理能力很重要。初级视觉皮层(V1)在不同的猫科动物中已经被广泛研究。神经元密度被认为是定义结构-功能关系的核心。在人类中,先前研究报告的神经元密度存在很大差异。我们发现人类 V1 的神经元密度为 79000 个神经元/mm3,是猕猴 V1 中先前确定的神经元密度的 35%。人类和猕猴的层密度比例相似。在 V1 中,眼优势柱(ODC)包含了许多哺乳动物物种中出现方位偏好和点状图像空间处理的回路。对一个 ODC 中的总神经元和黄斑视力(中央 15°)中的全神经元数目的分析表明,人类的神经元数量比猕猴多 1.3 倍,尽管猕猴的神经元密度是人类 V1 的 3 倍。我们提出,在功能处理单元中的神经元数量而不是在 mm2 的皮层下的神经元数量更适合跨物种的皮层比较。

相似文献

2
Nasotemporal asymmetries in V1: ocular dominance columns of infant, adult, and strabismic macaque monkeys.
J Comp Neurol. 1997 Nov 10;388(1):32-46. doi: 10.1002/(sici)1096-9861(19971110)388:1<32::aid-cne3>3.0.co;2-p.
4
Receptive fields and functional architecture of macaque V2.
J Neurophysiol. 1994 Jun;71(6):2517-42. doi: 10.1152/jn.1994.71.6.2517.
5
Thalamocortical processing in vision.
Vis Neurosci. 2017 Jan;34:E007. doi: 10.1017/S0952523817000049.
6
Orientation Selectivity from Very Sparse LGN Inputs in a Comprehensive Model of Macaque V1 Cortex.
J Neurosci. 2016 Dec 7;36(49):12368-12384. doi: 10.1523/JNEUROSCI.2603-16.2016.
10
Circuits for local and global signal integration in primary visual cortex.
J Neurosci. 2002 Oct 1;22(19):8633-46. doi: 10.1523/JNEUROSCI.22-19-08633.2002.

引用本文的文献

1
Human V4 size predicts crowding distance.
Nat Commun. 2025 Apr 24;16(1):3876. doi: 10.1038/s41467-025-59101-w.
2
Unpacking the V1 map: Differential covariation of visual properties across spatial dimensions.
bioRxiv. 2025 May 14:2025.03.19.644195. doi: 10.1101/2025.03.19.644195.
3
Human V4 size predicts crowding distance.
bioRxiv. 2025 Feb 28:2024.04.03.587977. doi: 10.1101/2024.04.03.587977.

本文引用的文献

1
Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2300545120. doi: 10.1073/pnas.2300545120. Epub 2023 Apr 25.
2
A Computational Model of Direction Selectivity in Macaque V1 Cortex Based on Dynamic Differences between On and Off Pathways.
J Neurosci. 2022 Apr 20;42(16):3365-3380. doi: 10.1523/JNEUROSCI.2145-21.2022. Epub 2022 Mar 3.
3
Glia Regulate the Development, Function, and Plasticity of the Visual System From Retina to Cortex.
Front Neural Circuits. 2022 Feb 1;16:826664. doi: 10.3389/fncir.2022.826664. eCollection 2022.
5
A theory of direction selectivity for macaque primary visual cortex.
Proc Natl Acad Sci U S A. 2021 Aug 10;118(32). doi: 10.1073/pnas.2105062118.
6
Normative cerebral cortical thickness for human visual areas.
Neuroimage. 2019 Nov 1;201:116057. doi: 10.1016/j.neuroimage.2019.116057. Epub 2019 Jul 25.
7
Comparison of contrast sensitivity in macaque monkeys and humans.
Vis Neurosci. 2019 Jan;36:E008. doi: 10.1017/S0952523819000051.
8
Neuronal Distribution Across the Cerebral Cortex of the Marmoset Monkey (Callithrix jacchus).
Cereb Cortex. 2019 Aug 14;29(9):3836-3863. doi: 10.1093/cercor/bhy263.
9
Rhythm and Synchrony in a Cortical Network Model.
J Neurosci. 2018 Oct 3;38(40):8621-8634. doi: 10.1523/JNEUROSCI.0675-18.2018. Epub 2018 Aug 17.
10
Mapping Cortical Laminar Structure in the 3D BigBrain.
Cereb Cortex. 2018 Jul 1;28(7):2551-2562. doi: 10.1093/cercor/bhy074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验