Suppr超能文献

迈向预测在线健康社交网络中的社会支持需求

Toward Predicting Social Support Needs in Online Health Social Networks.

作者信息

Choi Min-Je, Kim Sung-Hee, Lee Sukwon, Kwon Bum Chul, Yi Ji Soo, Choo Jaegul, Huh Jina

机构信息

Department of Computer Science and Engineering, Korea University, Seoul, Republic Of Korea.

Department of Industrial ICT Engineering, Dong-eui University, Busan, Republic Of Korea.

出版信息

J Med Internet Res. 2017 Aug 2;19(8):e272. doi: 10.2196/jmir.7660.

Abstract

BACKGROUND

While online health social networks (OHSNs) serve as an effective platform for patients to fulfill their various social support needs, predicting the needs of users and providing tailored information remains a challenge.

OBJECTIVE

The objective of this study was to discriminate important features for identifying users' social support needs based on knowledge gathered from survey data. This study also provides guidelines for a technical framework, which can be used to predict users' social support needs based on raw data collected from OHSNs.

METHODS

We initially conducted a Web-based survey with 184 OHSN users. From this survey data, we extracted 34 features based on 5 categories: (1) demographics, (2) reading behavior, (3) posting behavior, (4) perceived roles in OHSNs, and (5) values sought in OHSNs. Features from the first 4 categories were used as variables for binary classification. For the prediction outcomes, we used features from the last category: the needs for emotional support, experience-based information, unconventional information, and medical facts. We compared 5 binary classifier algorithms: gradient boosting tree, random forest, decision tree, support vector machines, and logistic regression. We then calculated the scores of the area under the receiver operating characteristic (ROC) curve (AUC) to understand the comparative effectiveness of the used features.

RESULTS

The best performance was AUC scores of 0.89 for predicting users seeking emotional support, 0.86 for experience-based information, 0.80 for unconventional information, and 0.83 for medical facts. With the gradient boosting tree as our best performing model, we analyzed the strength of individual features in predicting one's social support need. Among other discoveries, we found that users seeking emotional support tend to post more in OHSNs compared with others.

CONCLUSIONS

We developed an initial framework for automatically predicting social support needs in OHSNs using survey data. Future work should involve nonsurvey data to evaluate the feasibility of the framework. Our study contributes to providing personalized social support in OHSNs.

摘要

背景

虽然在线健康社交网络(OHSNs)是患者满足其各种社会支持需求的有效平台,但预测用户需求并提供量身定制的信息仍然是一项挑战。

目的

本研究的目的是根据从调查数据中收集的知识,辨别用于识别用户社会支持需求的重要特征。本研究还为一个技术框架提供了指导方针,该框架可用于根据从OHSNs收集的原始数据预测用户的社会支持需求。

方法

我们最初对184名OHSN用户进行了一项基于网络的调查。从这些调查数据中,我们基于5个类别提取了34个特征:(1)人口统计学,(2)阅读行为,(3)发布行为,(4)在OHSNs中的感知角色,以及(5)在OHSNs中寻求的价值。前4个类别的特征用作二元分类的变量。对于预测结果,我们使用了最后一个类别的特征:对情感支持、基于经验的信息、非常规信息和医学事实的需求。我们比较了5种二元分类器算法:梯度提升树、随机森林、决策树、支持向量机和逻辑回归。然后,我们计算了受试者操作特征(ROC)曲线下面积(AUC)的分数,以了解所使用特征的相对有效性。

结果

预测寻求情感支持的用户时,最佳性能的AUC分数为0.89;预测基于经验的信息时为0.86;预测非常规信息时为0.80;预测医学事实时为0.83。以梯度提升树作为表现最佳的模型,我们分析了各个特征在预测一个人的社会支持需求方面的强度。在其他发现中,我们发现与其他人相比,寻求情感支持的用户在OHSNs上发布的内容往往更多。

结论

我们使用调查数据开发了一个用于自动预测OHSNs中社会支持需求的初始框架。未来的工作应涉及非调查数据,以评估该框架的可行性。我们的研究有助于在OHSNs中提供个性化的社会支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验