Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
Sci Rep. 2017 Aug 2;7(1):7131. doi: 10.1038/s41598-017-07466-4.
Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. Here we describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure and area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO) thin film. Our solid-state devices demonstrate large and reversible alteration of cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. Our new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.
在纳米尺度上实现高效的热管理对于降低电子设备、芯片实验室平台和能量收集/转换系统的能耗和耗散非常重要。对于许多这些应用,人们非常希望有一种固态结构,能够以高的开/关比和高速率可逆地切换热传导。在这里,我们通过纳米结构的相变,即通过二氧化钒(VO)薄膜的微观结构变化来激活两个多晶硅表面之间的接触压力和面积的调制,描述了一种新颖的全固态热开关器件的设计和实现。我们的固态器件展示了作为温度函数的面内热导率的大且可逆的改变,实现了至少 2.5 的传导率比。我们使用纳米结构相变的新方法为需要先进的温度和热调节的应用提供了新的机会。