Chen F H, Fan L L, Chen S, Liao G M, Chen Y L, Wu P, Song Li, Zou C W, Wu Z Y
†National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China.
‡Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, P.R. China.
ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6875-81. doi: 10.1021/acsami.5b00540. Epub 2015 Mar 18.
External controlling the phase transition behavior of vanadium dioxide is important to realize its practical applications as energy-efficient electronic devices. Because of its relatively high phase transition temperature of 68 °C, the central challenge for VO2-based electronics, lies in finding an energy efficient way, to modulate the phase transition in a reversible and reproducible manner. In this work, we report an experimental realization of p-n heterojunctions by growing VO2 film on p-type GaN substrate. By adding the bias voltage on the p-n junction, the metal-insulator transition behavior of VO2 film can be changed continuously. It is demonstrated that the phase transition of VO2 film is closely associated with the carrier distribution within the space charge region, which can be directly controlled by the bias voltage. Our findings offer novel opportunities for modulating the phase transition of VO2 film in a reversible way as well as extending the concept of electric-field modulation on other phase transition materials.
外部控制二氧化钒的相变行为对于实现其作为节能电子器件的实际应用至关重要。由于其相对较高的68°C相变温度,基于VO₂的电子器件面临的核心挑战在于找到一种节能的方法,以可逆和可重复的方式调节相变。在这项工作中,我们报告了通过在p型GaN衬底上生长VO₂薄膜来实现p-n异质结的实验。通过在p-n结上施加偏置电压,可以连续改变VO₂薄膜的金属-绝缘体转变行为。结果表明,VO₂薄膜的相变与空间电荷区内的载流子分布密切相关,而载流子分布可由偏置电压直接控制。我们的研究结果为以可逆方式调节VO₂薄膜的相变以及将电场调制概念扩展到其他相变材料提供了新的机会。