Suppr超能文献

来自切萨皮克湾有氧-缺氧过渡区的新型远洋铁氧化泽塔变形菌纲细菌

Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone.

作者信息

Chiu Beverly K, Kato Shingo, McAllister Sean M, Field Erin K, Chan Clara S

机构信息

Department of Geological Sciences, University of Delaware, NewarkDE, United States.

Project Team for Development of New-Generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and TechnologyKanagawa, Japan.

出版信息

Front Microbiol. 2017 Jul 18;8:1280. doi: 10.3389/fmicb.2017.01280. eCollection 2017.

Abstract

Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, CP-5 and CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the gene, present in both CP-5 and CP-8 genomes; the consistent presence of in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O, as indicated by the presence of genes encoding -type cytochrome oxidases, but not the -type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II).

摘要

化能自养型铁氧化细菌(FeOB)理论上可以存在于任何亚铁离子(Fe(II))与氧气(或硝酸盐)共存的环境中。直到最近,海洋铁氧化β-变形菌主要在海底和地下环境中被观测到,而不是在氧化还原分层的水柱中。这可能是由于远洋生活方式对β-变形菌带来的挑战,鉴于现代海水中亚铁离子浓度较低,以及羟基氧化铁生物矿物可能导致细胞下沉的可能性。然而,我们最近从切萨皮克湾的有氧-缺氧过渡带培养出了β-变形菌,这表明它们能够在分层河口环境中生存并参与生物地球化学循环。在这里,我们描述了两个新物种CP-5和CP-8的分离、特征及基因组,它们是首批从远洋环境中分离出的β-变形菌。我们探寻了使CP-5和CP-8菌株能够克服生活在因潮汐混合导致亚铁离子浓度低且氧气波动频繁的氧化还原梯度中的挑战的适应性特征。我们发现CP菌株会产生独特的、类似 dreadlock的羟基氧化铁结构,这些结构很容易脱落,这有助于细胞在水柱中保持悬浮状态。这些氧化物是亚铁离子氧化的副产物,可能由CP-5和CP-8基因组中都存在的假定亚铁离子氧化酶基因催化;在所有微需氧FeOB和其他FeOB基因组中持续存在该基因,支持了其在亚铁离子氧化中的假定作用。CP菌株还具有与生物膜形成相关的两个基因簇(Wsp系统和广泛定殖岛),而在其他β-变形菌中不存在或很少见。我们提出,生物膜形成使CP菌株能够附着在硫化亚铁颗粒上并形成絮凝物,这是一种在含氧量更高的水体中 scavenging亚铁离子并形成低氧微环境的有利策略。然而,CP菌株似乎适应了稍高浓度的氧气,这从编码Cbb3型细胞色素氧化酶的基因的存在可以看出,但在所有其他β-变形菌分离基因组中发现的是aa3型。总体而言,我们的结果揭示了在物理动态、亚铁离子浓度低的水柱中生存的适应性特征,表明特定生态位策略可以使β-变形菌在任何有亚铁离子的环境中生存。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce94/5513912/de3bcedfbedb/fmicb-08-01280-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验