Suppr超能文献

具有区间删失失效时间数据的依结果抽样。

Outcome-dependent sampling with interval-censored failure time data.

作者信息

Zhou Qingning, Cai Jianwen, Zhou Haibo

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A.

出版信息

Biometrics. 2018 Mar;74(1):58-67. doi: 10.1111/biom.12744. Epub 2017 Aug 3.

Abstract

Epidemiologic studies and disease prevention trials often seek to relate an exposure variable to a failure time that suffers from interval-censoring. When the failure rate is low and the time intervals are wide, a large cohort is often required so as to yield reliable precision on the exposure-failure-time relationship. However, large cohort studies with simple random sampling could be prohibitive for investigators with a limited budget, especially when the exposure variables are expensive to obtain. Alternative cost-effective sampling designs and inference procedures are therefore desirable. We propose an outcome-dependent sampling (ODS) design with interval-censored failure time data, where we enrich the observed sample by selectively including certain more informative failure subjects. We develop a novel sieve semiparametric maximum empirical likelihood approach for fitting the proportional hazards model to data from the proposed interval-censoring ODS design. This approach employs the empirical likelihood and sieve methods to deal with the infinite-dimensional nuisance parameters, which greatly reduces the dimensionality of the estimation problem and eases the computation difficulty. The consistency and asymptotic normality of the resulting regression parameter estimator are established. The results from our extensive simulation study show that the proposed design and method works well for practical situations and is more efficient than the alternative designs and competing approaches. An example from the Atherosclerosis Risk in Communities (ARIC) study is provided for illustration.

摘要

流行病学研究和疾病预防试验常常试图将一个暴露变量与一个存在区间删失的失效时间联系起来。当失效率较低且时间间隔较宽时,通常需要一个大的队列,以便在暴露与失效时间的关系上获得可靠的精度。然而,对于预算有限的研究者来说,采用简单随机抽样的大型队列研究可能成本过高,尤其是当获取暴露变量的成本很高时。因此,需要有成本效益的替代抽样设计和推断程序。我们提出了一种针对区间删失失效时间数据的依结果抽样(ODS)设计,即通过有选择地纳入某些信息更丰富的失效个体来丰富观测样本。我们开发了一种新颖的筛半参数最大经验似然方法,用于将比例风险模型拟合到所提出的区间删失ODS设计的数据中。该方法采用经验似然和筛法来处理无穷维的干扰参数,这大大降低了估计问题的维度并减轻了计算难度。建立了所得回归参数估计量的一致性和渐近正态性。我们广泛的模拟研究结果表明,所提出的设计和方法在实际情况中效果良好,并且比替代设计和竞争方法更有效。文中提供了社区动脉粥样硬化风险(ARIC)研究的一个例子进行说明。

相似文献

1
Outcome-dependent sampling with interval-censored failure time data.
Biometrics. 2018 Mar;74(1):58-67. doi: 10.1111/biom.12744. Epub 2017 Aug 3.
2
Semiparametric inference for a two-stage outcome-dependent sampling design with interval-censored failure time data.
Lifetime Data Anal. 2020 Jan;26(1):85-108. doi: 10.1007/s10985-019-09461-5. Epub 2019 Jan 7.
3
Case-cohort studies with interval-censored failure time data.
Biometrika. 2017 Mar;104(1):17-29. doi: 10.1093/biomet/asw067. Epub 2017 Feb 3.
4
Semiparametric regression analysis of case-cohort studies with multiple interval-censored disease outcomes.
Stat Med. 2021 Jun 15;40(13):3106-3123. doi: 10.1002/sim.8962. Epub 2021 Mar 29.
5
Regression analysis of case K interval-censored failure time data in the presence of informative censoring.
Biometrics. 2016 Dec;72(4):1103-1112. doi: 10.1111/biom.12527. Epub 2016 Apr 28.
6
Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data.
Lifetime Data Anal. 2020 Oct;26(4):708-730. doi: 10.1007/s10985-020-09496-z. Epub 2020 Mar 10.

引用本文的文献

1
Semiparametric inference for a two-stage outcome-dependent sampling design with interval-censored failure time data.
Lifetime Data Anal. 2020 Jan;26(1):85-108. doi: 10.1007/s10985-019-09461-5. Epub 2019 Jan 7.

本文引用的文献

1
Case-cohort studies with interval-censored failure time data.
Biometrika. 2017 Mar;104(1):17-29. doi: 10.1093/biomet/asw067. Epub 2017 Feb 3.
2
Maximum likelihood estimation for semiparametric transformation models with interval-censored data.
Biometrika. 2016 Jun;103(2):253-271. doi: 10.1093/biomet/asw013. Epub 2016 May 24.
3
Recent progresses in outcome-dependent sampling with failure time data.
Lifetime Data Anal. 2017 Jan;23(1):57-82. doi: 10.1007/s10985-015-9355-7. Epub 2016 Jan 13.
4
A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data.
Biometrics. 2016 Mar;72(1):222-31. doi: 10.1111/biom.12389. Epub 2015 Sep 22.
5
Statistical inference for the additive hazards model under outcome-dependent sampling.
Can J Stat. 2015 Sep;43(3):436-453. doi: 10.1002/cjs.11257.
6
A Bayesian proportional hazards model for general interval-censored data.
Lifetime Data Anal. 2015 Jul;21(3):470-90. doi: 10.1007/s10985-014-9305-9. Epub 2014 Aug 7.
8
Efficient Estimation of Semiparametric Transformation Models for Two-Phase Cohort Studies.
J Am Stat Assoc. 2014 Jan 1;109(505):371-383. doi: 10.1080/01621459.2013.842172.
9
Marginal hazards model for case-cohort studies with multiple disease outcomes.
Biometrika. 2009 Dec;96(4):887-901. doi: 10.1093/biomet/asp059.
10
Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome.
Biometrics. 2011 Mar;67(1):194-202. doi: 10.1111/j.1541-0420.2010.01446.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验