Suppr超能文献

一种用于具有连续结果的依赖结果抽样方案数据的半参数经验似然方法。

A semiparametric empirical likelihood method for data from an outcome-dependent sampling scheme with a continuous outcome.

作者信息

Zhou Haibo, Weaver M A, Qin J, Longnecker M P, Wang M C

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, 27599, USA.

出版信息

Biometrics. 2002 Jun;58(2):413-21. doi: 10.1111/j.0006-341x.2002.00413.x.

Abstract

Outcome-dependent sampling (ODS) schemes can be a cost effective way to enhance study efficiency. The case-control design has been widely used in epidemiologic studies. However, when the outcome is measured on a continuous scale, dichotomizing the outcome could lead to a loss of efficiency. Recent epidemiologic studies have used ODS sampling schemes where, in addition to an overall random sample, there are also a number of supplemental samples that are collected based on a continuous outcome variable. We consider a semiparametric empirical likelihood inference procedure in which the underlying distribution of covariates is treated as a nuisance parameter and is left unspecified. The proposed estimator has asymptotic normality properties. The likelihood ratio statistic using the semiparametric empirical likelihood function has Wilks-type properties in that, under the null, it follows a chi-square distribution asymptotically and is independent of the nuisance parameters. Our simulation results indicate that, for data obtained using an ODS design, the semiparametric empirical likelihood estimator is more efficient than conditional likelihood and probability weighted pseudolikelihood estimators and that ODS designs (along with the proposed estimator) can produce more efficient estimates than simple random sample designs of the same size. We apply the proposed method to analyze a data set from the Collaborative Perinatal Project (CPP), an ongoing environmental epidemiologic study, to assess the relationship between maternal polychlorinated biphenyl (PCB) level and children's IQ test performance.

摘要

基于结果的抽样(ODS)方案可能是提高研究效率的一种经济有效的方法。病例对照设计已广泛应用于流行病学研究中。然而,当结果以连续尺度测量时,将结果二分可能会导致效率损失。最近的流行病学研究使用了ODS抽样方案,其中除了总体随机样本外,还根据连续结果变量收集了一些补充样本。我们考虑一种半参数经验似然推断程序,其中协变量的潜在分布被视为一个干扰参数,且未作具体设定。所提出的估计量具有渐近正态性。使用半参数经验似然函数的似然比统计量具有威尔克斯型性质,即在原假设下,它渐近地服从卡方分布,且与干扰参数无关。我们的模拟结果表明,对于使用ODS设计获得的数据,半参数经验似然估计量比条件似然估计量和概率加权伪似然估计量更有效,并且ODS设计(连同所提出的估计量)比相同规模的简单随机样本设计能产生更有效的估计。我们应用所提出的方法分析来自协作围产期项目(CPP)的数据集,这是一项正在进行的环境流行病学研究,以评估母亲多氯联苯(PCB)水平与儿童智商测试表现之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验