具有II型区间删失生存数据的加性风险回归的半参数有效估计

Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data.

作者信息

He Baihua, Liu Yanyan, Wu Yuanshan, Zhao Xingqiu

机构信息

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, Hubei, China.

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, 430072, Hubei, China.

出版信息

Lifetime Data Anal. 2020 Oct;26(4):708-730. doi: 10.1007/s10985-020-09496-z. Epub 2020 Mar 10.

Abstract

Interval-censored data often arise naturally in medical, biological, and demographical studies. As a matter of routine, the Cox proportional hazards regression is employed to fit such censored data. The related work in the framework of additive hazards regression, which is always considered as a promising alternative, remains to be investigated. We propose a sieve maximum likelihood method for estimating regression parameters in the additive hazards regression with case II interval-censored data, which consists of right-, left- and interval-censored observations. We establish the consistency and the asymptotic normality of the proposed estimator and show that it attains the semiparametric efficiency bound. The finite-sample performance of the proposed method is assessed via comprehensive simulation studies, which is further illustrated by a real clinical example for patients with hemophilia.

摘要

区间删失数据在医学、生物学和人口统计学研究中经常自然出现。作为常规做法,采用Cox比例风险回归来拟合此类删失数据。在加法风险回归框架下的相关工作,一直被视为一种有前景的替代方法,仍有待研究。我们提出一种筛极大似然方法,用于估计具有II型区间删失数据的加法风险回归中的回归参数,这些数据包括右删失、左删失和区间删失观测值。我们建立了所提估计量的一致性和渐近正态性,并表明它达到了半参数效率界。通过全面的模拟研究评估了所提方法的有限样本性能,并用血友病患者的真实临床实例进一步说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索