Suppr超能文献

工程化环肽作为特异性CXCR4成像试剂的体内评价

In vivo Evaluation of an Engineered Cyclotide as Specific CXCR4 Imaging Reagent.

作者信息

Lesniak Wojciech G, Aboye Teshome, Chatterjee Samit, Camarero Julio A, Nimmagadda Sridhar

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, 21287, USA.

Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, 90089-9121, USA.

出版信息

Chemistry. 2017 Oct 17;23(58):14469-14475. doi: 10.1002/chem.201702540. Epub 2017 Aug 3.

Abstract

The CXCR4 chemokine receptor plays a key regulatory role in many biological functions, including embryonic development and controlling leukocyte functions during inflammation and immunity. CXCR4 has been also associated with multiple types of cancers where its overexpression/activation promotes metastasis, angiogenesis, and tumor growth and/or survival. Furthermore, CXCR4 is involved in HIV replication, as it is a co-receptor for viral entry into host cells. Altogether, these features make CXCR4 a very attractive target for the development of imaging and therapeutic agents. Here, the in vivo evaluation of the MCoTI-based cyclotide, MCo-CVX-5c, for the development of imaging agents that target CXCR4 is reported. Cyclotide MCo-CVX-5c is a potent CXCR4 antagonist with a remarkable in vivo resistance to biological degradation in serum. A [ Cu]-DOTA-labeled version of this cyclotide demonstrated high and significant uptake in U87-stb-CXCR4 tumors compared to the control U87 tumors. Furthermore, protracted imaging studies demonstrated radiotracer retention in the U87-stb-CXCR4 tumor at 24 h post injection. Uptake in U87-stb-CXCR4 tumors could be blocked by unlabeled MCo-CVX-5c, showing high in vivo specificity. These results demonstrate the in vivo specificity and retention of a bioactive molecularly targeted cyclotide and highlight the potential of bioactive cyclotides for the development of new imaging agents that target CXCR4.

摘要

CXCR4趋化因子受体在许多生物学功能中发挥关键调节作用,包括胚胎发育以及在炎症和免疫过程中控制白细胞功能。CXCR4还与多种癌症相关,其过表达/激活会促进转移、血管生成以及肿瘤生长和/或存活。此外,CXCR4参与HIV复制,因为它是病毒进入宿主细胞的共受体。总之,这些特性使CXCR4成为开发成像和治疗药物极具吸引力的靶点。在此,报告了基于MCoTI的环肽MCo-CVX-5c用于开发靶向CXCR4的成像剂的体内评估。环肽MCo-CVX-5c是一种有效的CXCR4拮抗剂,在血清中对生物降解具有显著的体内抗性。与对照U87肿瘤相比,这种环肽的[Cu]-DOTA标记版本在U87-stb-CXCR4肿瘤中显示出高且显著的摄取。此外,长时间的成像研究表明,注射后24小时放射性示踪剂保留在U87-stb-CXCR4肿瘤中。未标记的MCo-CVX-5c可阻断U87-stb-CXCR4肿瘤中的摄取,显示出高体内特异性。这些结果证明了生物活性分子靶向环肽的体内特异性和保留,并突出了生物活性环肽在开发靶向CXCR4的新型成像剂方面的潜力。

相似文献

1
In vivo Evaluation of an Engineered Cyclotide as Specific CXCR4 Imaging Reagent.
Chemistry. 2017 Oct 17;23(58):14469-14475. doi: 10.1002/chem.201702540. Epub 2017 Aug 3.
2
Lipidation of a bioactive cyclotide-based CXCR4 antagonist greatly improves its pharmacokinetic profile in vivo.
J Control Release. 2023 Jul;359:26-32. doi: 10.1016/j.jconrel.2023.05.026. Epub 2023 May 30.
3
Structural characterization and in vivo evaluation of β-Hairpin peptidomimetics as specific CXCR4 imaging agents.
Mol Pharm. 2015 Mar 2;12(3):941-53. doi: 10.1021/mp500799q. Epub 2015 Feb 3.
4
Imaging CXCR4 expression in human cancer xenografts: evaluation of monocyclam 64Cu-AMD3465.
J Nucl Med. 2011 Jun;52(6):986-93. doi: 10.2967/jnumed.110.085613.
5
Rapid parallel synthesis of bioactive folded cyclotides by using a tea-bag approach.
Chembiochem. 2015 Mar 23;16(5):827-33. doi: 10.1002/cbic.201402691. Epub 2015 Feb 6.
6
Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity.
J Med Chem. 2012 Dec 13;55(23):10729-34. doi: 10.1021/jm301468k. Epub 2012 Nov 27.
7
Bridged cyclams as imaging agents for chemokine receptor 4 (CXCR4).
Nucl Med Biol. 2014 Aug;41(7):552-61. doi: 10.1016/j.nucmedbio.2014.04.081. Epub 2014 Apr 21.
8
Cu PET Imaging of the CXCR4 Chemokine Receptor Using a Cross-Bridged Cyclam Bis-Tetraazamacrocyclic Antagonist.
J Nucl Med. 2020 Jan;61(1):123-128. doi: 10.2967/jnumed.118.218008. Epub 2019 Jun 14.
9
Preclinical Evaluation of [Cu]NOTA-CP01 as a PET Imaging Agent for Metastatic Esophageal Squamous Cell Carcinoma.
Mol Pharm. 2021 Sep 6;18(9):3638-3648. doi: 10.1021/acs.molpharmaceut.1c00600. Epub 2021 Aug 23.
10
High-Contrast CXCR4-Targeted F-PET Imaging Using a Potent and Selective Antagonist.
Mol Pharm. 2021 Jan 4;18(1):187-197. doi: 10.1021/acs.molpharmaceut.0c00785. Epub 2020 Nov 30.

引用本文的文献

1
Transgenic Innovation: Harnessing Cyclotides as Next Generation Pesticides.
ACS Omega. 2025 Feb 17;10(7):6323-6336. doi: 10.1021/acsomega.4c09668. eCollection 2025 Feb 25.
2
Molecular Chimera in Cancer Drug Discovery: Beyond Antibody Therapy, Designing Grafted Stable Peptides Targeting Cancer.
Int J Pept Res Ther. 2025;31(3):38. doi: 10.1007/s10989-025-10690-6. Epub 2025 Feb 17.
3
Small and Versatile Cyclotides as Anti-infective Agents.
ACS Infect Dis. 2025 Feb 14;11(2):386-397. doi: 10.1021/acsinfecdis.4c00957. Epub 2025 Jan 22.
4
The Role of Peptides in Combatting HIV Infection: Applications and Insights.
Molecules. 2024 Oct 19;29(20):4951. doi: 10.3390/molecules29204951.
5
Kalata B1 Enhances Temozolomide Toxicity to Glioblastoma Cells.
Biomedicines. 2024 Sep 28;12(10):2216. doi: 10.3390/biomedicines12102216.
6
Radiology of fibrosis part III: genitourinary system.
J Transl Med. 2024 Jul 3;22(1):616. doi: 10.1186/s12967-024-05333-1.
7
Chemical synthesis of grafted cyclotides using a "plug and play" approach.
RSC Chem Biol. 2024 Apr 29;5(6):567-571. doi: 10.1039/d4cb00008k. eCollection 2024 Jun 5.
8
Design of Protein Segments and Peptides for Binding to Protein Targets.
Biodes Res. 2022 Apr 15;2022:9783197. doi: 10.34133/2022/9783197. eCollection 2022.
9
Resistance is futile: targeting multidrug-resistant bacteria with Cys-rich cyclic polypeptides.
RSC Chem Biol. 2023 Aug 21;4(10):722-735. doi: 10.1039/d3cb00015j. eCollection 2023 Oct 4.
10
Lipidation of a bioactive cyclotide-based CXCR4 antagonist greatly improves its pharmacokinetic profile in vivo.
J Control Release. 2023 Jul;359:26-32. doi: 10.1016/j.jconrel.2023.05.026. Epub 2023 May 30.

本文引用的文献

1
Cyclotides: Overview and Biotechnological Applications.
Chembiochem. 2017 Jul 18;18(14):1350-1363. doi: 10.1002/cbic.201700153. Epub 2017 May 24.
2
Cyclotides as drug design scaffolds.
Curr Opin Chem Biol. 2017 Jun;38:8-16. doi: 10.1016/j.cbpa.2017.01.018. Epub 2017 Feb 27.
3
Recombinant Expression of Cyclotides Using Split Inteins.
Methods Mol Biol. 2017;1495:41-55. doi: 10.1007/978-1-4939-6451-2_4.
4
Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles.
Curr Opin Chem Biol. 2016 Oct;34:143-150. doi: 10.1016/j.cbpa.2016.08.022. Epub 2016 Sep 16.
5
CXCR4 and CCR7: Two eligible targets in targeted cancer therapy.
Cell Biol Int. 2016 Sep;40(9):955-67. doi: 10.1002/cbin.10631. Epub 2016 Jul 22.
6
Chemical and biological production of cyclotides.
Adv Bot Res. 2015;76:271-303. doi: 10.1016/bs.abr.2015.08.006.
7
Biodistribution of the cyclotide MCoTI-II, a cyclic disulfide-rich peptide drug scaffold.
J Pept Sci. 2016 May;22(5):305-10. doi: 10.1002/psc.2862. Epub 2016 Mar 1.
8
CXCR4 in breast cancer: oncogenic role and therapeutic targeting.
Drug Des Devel Ther. 2015 Aug 28;9:4953-64. doi: 10.2147/DDDT.S84932. eCollection 2015.
9
Radioimmunotherapy of human tumours.
Nat Rev Cancer. 2015 Jun;15(6):347-60. doi: 10.1038/nrc3925.
10
Rapid parallel synthesis of bioactive folded cyclotides by using a tea-bag approach.
Chembiochem. 2015 Mar 23;16(5):827-33. doi: 10.1002/cbic.201402691. Epub 2015 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验