Ubaid Fareeha, Matli Penchal Reddy, Shakoor Rana Abdul, Parande Gururaj, Manakari Vyasaraj, Mohamed Adel Mohamed Amer, Gupta Manoj
Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt.
Materials (Basel). 2017 Jun 6;10(6):621. doi: 10.3390/ma10060621.
In this work, Al-B₄C nanocomposites were produced by microwave sintering and followed by hot extrusion processes. The influence of ceramic reinforcement (B₄C) nanoparticles on the physical, microstructural, mechanical, and thermal characteristics of the extruded Al-B₄C nanocomposites was investigated. It was observed that the density decreased and porosity increased with an increase in B₄C content in aluminum matrix. The porosity of the composites increased whereas density decreased with increasing B₄C content. Electron microscopy analysis reveals the uniform distribution of B4C nanoparticles in the Al matrix. Mechanical characterization results revealed that hardness, elastic modulus, compression, and tensile strengths increased whereas ductility decreases with increasing B₄C content. Al-1.0 vol. % B₄C nanocomposite exhibited best hardness (135.56 Hv), Young's modulus (88.63 GPa), and compression/tensile strength (524.67/194.41 MPa) among the materials investigated. Further, coefficient of thermal expansion (CTE) of composites gradually decreased with an increase in B₄C content.
在本工作中,通过微波烧结并随后进行热挤压工艺制备了Al-B₄C纳米复合材料。研究了陶瓷增强相(B₄C)纳米颗粒对挤压态Al-B₄C纳米复合材料的物理、微观结构、力学和热学特性的影响。观察到随着铝基体中B₄C含量的增加,密度降低而孔隙率增加。随着B₄C含量的增加,复合材料的孔隙率增加而密度降低。电子显微镜分析表明B₄C纳米颗粒在Al基体中均匀分布。力学性能表征结果显示,随着B₄C含量的增加,硬度、弹性模量、抗压强度和抗拉强度增加,而延展性降低。在所研究的材料中,Al-1.0体积% B₄C纳米复合材料表现出最佳的硬度(135.56 Hv)、杨氏模量(88.63 GPa)以及抗压/抗拉强度(524.67/194.41 MPa)。此外,复合材料的热膨胀系数(CTE)随着B₄C含量的增加而逐渐降低。