Radek Manuel, Liedke Bartosz, Schmidt Bernd, Voelskow Matthias, Bischoff Lothar, Hansen John Lundsgaard, Larsen Arne Nylandsted, Bougeard Dominique, Böttger Roman, Prucnal Slawomir, Posselt Matthias, Bracht Hartmut
Institute of Materials Physics, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
Materials (Basel). 2017 Jul 17;10(7):813. doi: 10.3390/ma10070813.
Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing.
利用晶体和预非晶化同位素多层膜来研究硅(Si)、锗(Ge)和硅锗(SiGe)中离子束混合对样品原子结构、温度、离子通量以及注入离子的电掺杂的依赖性。混合的程度通过二次离子质谱法测定。沟道几何中的卢瑟福背散射光谱法、拉曼光谱法和透射电子显微镜提供了离子辐照后结构状态的信息。确定了具有特征性混合特性的不同温度范围。Si和Ge的原子混合差异变得明显,而SiGe表现出中间行为。总体而言,原子混合随温度增加,并且在非晶态比在晶态更强。Ge中离子束诱导的混合不依赖于注入离子的掺杂。相比之下,在较高温度下Si中发现了掺杂效应。分子动力学模拟清楚地表明,Ge中的离子束混合主要由热尖峰机制决定。在Si热尖峰的情况下,低温下混合占主导,而高温下离子束诱导的增强自扩散主导原子混合。后一过程归因于辐照和损伤退火过程中形成的高度可移动的Si双间隙原子。