Klos Jan, Tröger Jan, Keutgen Jens, Losert Merritt P, Abrosimov Nikolay V, Knoch Joachim, Bracht Hartmut, Coppersmith Susan N, Friesen Mark, Cojocaru-Mirédin Oana, Schreiber Lars R, Bougeard Dominique
JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH & RWTH Aachen University, 52074, Aachen, Germany.
Institute of Materials Physics, University of Münster, 48149, Münster, Germany.
Adv Sci (Weinh). 2024 Nov;11(42):e2407442. doi: 10.1002/advs.202407442. Epub 2024 Sep 11.
Understanding crystal characteristics down to the atomistic level increasingly emerges as a crucial insight for creating solid state platforms for qubits with reproducible and homogeneous properties. Here, isotope concentration depth profiles in a SiGe/Si/SiGe heterostructure are analyzed with atom probe tomography (APT) and time-of-flight secondary-ion mass spectrometry down to their respective limits of isotope concentrations and depth resolution. Spin-echo dephasing times and valley energy splittings E around have been observed for single spin qubits in this quantum well (QW) heterostructure, pointing toward the suppression of qubit decoherence through hyperfine interaction with crystal host nuclear spins or via scattering between valley states. The concentration of nuclear spin-carrying Si is 50 ± 20ppm in the Si QW. The resolution limits of APT allow to uncover that both the SiGe/Si and the Si/SiGe interfaces of the QW are shaped by epitaxial growth front segregation signatures on a few monolayer scale. A subsequent thermal treatment, representative of the thermal budget experienced by the heterostructure during qubit device processing, broadens the top SiGe/Si QW interface by about two monolayers, while the width of the bottom Si/SiGe interface remains unchanged. Using a tight-binding model including SiGe alloy disorder, these experimental results suggest that the combination of the slightly thermally broadened top interface and of a minimal Ge concentration of % in the QW, resulting from segregation, is instrumental for the observed large . Minimal Ge additions <1%, which get more likely in thin QWs, will hence support high E without compromising coherence times. At the same time, taking thermal treatments during device processing as well as the occurrence of crystal growth characteristics into account seems important for the design of reproducible qubit properties.
深入到原子层面理解晶体特性,对于创建具有可重复且均匀特性的量子比特固态平台而言,愈发成为一项关键的见解。在此,利用原子探针断层扫描(APT)和飞行时间二次离子质谱法,对SiGe/Si/SiGe异质结构中的同位素浓度深度分布进行了分析,直至达到它们各自的同位素浓度极限和深度分辨率。在该量子阱(QW)异质结构中,已观测到单个自旋量子比特的自旋回波退相时间以及约为 的谷能量分裂E,这表明通过与晶体主体核自旋的超精细相互作用或通过谷态之间的散射,可抑制量子比特退相干。在Si量子阱中,携带核自旋的Si的浓度为50±20ppm。APT的分辨率极限使得能够揭示量子阱的SiGe/Si和Si/SiGe界面均由几个单层尺度上的外延生长前沿偏析特征所塑造。随后的热处理,代表了量子比特器件加工过程中异质结构所经历的热预算,使顶部SiGe/Si量子阱界面拓宽了约两个单层,而底部Si/SiGe界面的宽度保持不变。使用包含SiGe合金无序的紧束缚模型,这些实验结果表明,顶部界面略微热拓宽以及量子阱中由于偏析导致的最小Ge浓度为 %的组合,对于观测到的大 起着重要作用。因此,在薄量子阱中更有可能出现的小于1%的最小Ge添加量,将在不影响相干时间的情况下支持高E。同时,在器件加工过程中考虑热处理以及晶体生长特性的出现,对于设计可重复的量子比特特性似乎很重要。