Xu Yingjie, Gao Tian
Engineering Simulation and Aerospace Computing (ESAC), Northwestern Polytechnical University, Xi'an 710072, China.
Materials (Basel). 2016 Mar 23;9(4):222. doi: 10.3390/ma9040222.
Carbon fiber-reinforced multi-layered pyrocarbon-silicon carbide matrix (C/C-SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C-SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C-SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method.
碳纤维增强多层热解碳-碳化硅基体(C/C-SiC)复合材料广泛应用于航空航天结构中。C/C-SiC复合材料复杂的空间结构和材料不均匀性对其性能定制构成了挑战。因此,发现性能与微观结构之间的内在关系,并依次优化微观结构以获得性能最佳的复合材料,成为实际应用的关键。这项工作的目的是通过控制多层基体厚度来优化单向C/C-SiC复合材料的热弹性性能。提出了一种基于微观力学建模和反向传播(BP)神经网络的混合方法来预测复合材料的热弹性性能。然后,将粒子群优化(PSO)算法与该混合模型相结合,以实现优化设计,在弹性模量的约束下使复合材料的热膨胀系数(CTE)最小化。数值算例验证了所提出的混合模型和优化方法的有效性。