Suppr超能文献

一种用于冲击识别中传感器优化的贝叶斯方法。

A Bayesian Approach for Sensor Optimisation in Impact Identification.

作者信息

Mallardo Vincenzo, Sharif Khodaei Zahra, Aliabadi Ferri M H

机构信息

Department of Architecture, University of Ferrara, Via Quartieri 8, 44121 Ferrara, Italy.

Department of Aeronautics, Imperial College London, London SW7 2AZ, UK.

出版信息

Materials (Basel). 2016 Nov 22;9(11):946. doi: 10.3390/ma9110946.

Abstract

This paper presents a Bayesian approach for optimizing the position of sensors aimed at impact identification in composite structures under operational conditions. The uncertainty in the sensor data has been represented by statistical distributions of the recorded signals. An optimisation strategy based on the genetic algorithm is proposed to find the best sensor combination aimed at locating impacts on composite structures. A Bayesian-based objective function is adopted in the optimisation procedure as an indicator of the performance of meta-models developed for different sensor combinations to locate various impact events. To represent a real structure under operational load and to increase the reliability of the Structural Health Monitoring (SHM) system, the probability of malfunctioning sensors is included in the optimisation. The reliability and the robustness of the procedure is tested with experimental and numerical examples. Finally, the proposed optimisation algorithm is applied to a composite stiffened panel for both the uniform and non-uniform probability of impact occurrence.

摘要

本文提出了一种贝叶斯方法,用于在运行条件下优化复合材料结构中用于冲击识别的传感器位置。传感器数据中的不确定性已通过记录信号的统计分布来表示。提出了一种基于遗传算法的优化策略,以找到最佳的传感器组合,用于定位复合材料结构上的冲击。在优化过程中采用基于贝叶斯的目标函数,作为为不同传感器组合开发的元模型定位各种冲击事件性能的指标。为了表示运行载荷下的实际结构并提高结构健康监测(SHM)系统的可靠性,优化中考虑了传感器故障的概率。通过实验和数值示例测试了该过程的可靠性和鲁棒性。最后,将所提出的优化算法应用于复合加劲板,考虑了冲击发生的均匀和非均匀概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e352/5457245/f48b48f4c2bf/materials-09-00946-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验