Lu Dujiang, Yuan Chao, Yu Mengchun, Yang Yinghui, Wang Chao, Guan Rongzhang, Bian Xiufang
Key Laboratory for Liquid-Solid Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.
ACS Omega. 2020 Aug 19;5(34):21488-21496. doi: 10.1021/acsomega.0c02037. eCollection 2020 Sep 1.
Transition-metal oxides are attracting considerable attention as anodes for lithium-ion batteries because of their high reversible capacities. However, the drastic volume change and inferior electrical conductivity greatly retard their widespread applications in lithium-ion batteries. Herein, three-dimensional nanoporous composites of CoO (CoO and CoO) quantum dots and zeolitic imidazolate framework-67-derived carbon are fabricated by a precipitation method. The carbon prepared by carbonization of zeolitic imidazolate framework-67 can greatly enhance the electrical conductivity of the composite anodes. CoO quantum dots anchored firmly on zeolitic imidazolate framework-67-derived carbon can effectively inhibit the aggregation and volume change of CoO quantum dots during lithiation/delithiation processes. The nanoporous structure can shorten the ion diffusion paths and maintain the structural integrity upon cycling. Meanwhile, kinetics analysis reveals that a capacitance mechanism dominates the lithium storage capacity, which can greatly enhance the electrochemical performance. The composite anodes show a high discharge capacity of 1873 mAh g after 200 cycles at 200 mA g, ultralong cycle life (1246 mAh g after 900 cycles at 1000 mA g), and improved rate performance. This work may provide guidelines for preparing cobalt oxide-based anodes for LIBs.
过渡金属氧化物因其高可逆容量而作为锂离子电池的负极备受关注。然而,剧烈的体积变化和较差的电导率极大地阻碍了它们在锂离子电池中的广泛应用。在此,通过沉淀法制备了CoO(CoO和CoO)量子点与沸石咪唑酯骨架-67衍生碳的三维纳米多孔复合材料。由沸石咪唑酯骨架-67碳化制备的碳可大大提高复合负极的电导率。牢固锚定在沸石咪唑酯骨架-67衍生碳上的CoO量子点可有效抑制CoO量子点在锂化/脱锂过程中的聚集和体积变化。纳米多孔结构可缩短离子扩散路径并在循环时保持结构完整性。同时,动力学分析表明电容机制主导着锂存储容量,这可大大提高电化学性能。复合负极在200 mA g下循环200次后显示出1873 mAh g的高放电容量、超长循环寿命(在1000 mA g下循环900次后为1246 mAh g)以及改善的倍率性能。这项工作可为制备用于锂离子电池的氧化钴基负极提供指导。