Suppr超能文献

形状优化的石墨烯 Corbino 器件中的量子输运、应变诱导的完美传导模式和谷滤波

Quantized Transport, Strain-Induced Perfectly Conducting Modes, and Valley Filtering on Shape-Optimized Graphene Corbino Devices.

机构信息

School of Mathematics, The University of Manchester , Manchester, M13 9PL, England.

MackGraphe-Graphene and Nano-Materials Research Center, Mackenzie Presbyterian University , Rua da Consolação 896, 01302-907, São Paulo, SP, Brazil.

出版信息

Nano Lett. 2017 Sep 13;17(9):5304-5313. doi: 10.1021/acs.nanolett.7b01663. Epub 2017 Aug 9.

Abstract

The extreme mechanical resilience of graphene and the peculiar coupling it hosts between lattice and electronic degrees of freedom have spawned a strong impetus toward strain-engineered graphene where, on the one hand, strain augments the richness of its phenomenology and makes possible new concepts for electronic devices, and on the other hand, new and extreme physics might take place. Here, we demonstrate that the shape of substrates supporting graphene sheets can be optimized for approachable experiments where strain-induced pseudomagnetic fields (PMF) can be tailored by pressure for directionally selective electronic transmission and pinching-off of current flow down to the quantum channel limit. The Corbino-type layout explored here furthermore allows filtering of charge carriers according to valley and current direction, which can be used to inject or collect valley-polarized currents, thus realizing one of the basic elements required for valleytronics. Our results are based on a framework developed to realistically determine the combination of strain, external parameters, and geometry optimally compatible with the target spatial profile of a desired physical property-the PMF in this case. Characteristic conductance profiles are analyzed through quantum transport calculations on large graphene devices having the optimal shape.

摘要

石墨烯具有极强的机械弹性,其晶格和电子自由度之间存在特殊的耦合,这促使人们对应变工程石墨烯产生了强烈的兴趣。一方面,应变可以丰富其现象学,并为电子器件带来新的概念;另一方面,新的极端物理现象也可能发生。在这里,我们证明了支撑石墨烯片的衬底的形状可以进行优化,以实现易于进行的实验,在这些实验中,应变诱导的赝磁场(PMF)可以通过压力进行调整,从而实现具有方向选择性的电子传输和电流的截止,直至达到量子通道极限。这里探索的科宾诺型布局还允许根据谷值和电流方向对载流子进行过滤,这可用于注入或收集谷值极化电流,从而实现谷电子学所需的基本元件之一。我们的结果基于一个框架,该框架可用于实际确定应变、外部参数和几何形状的组合,使其与所需物理性质(在此情况下为 PMF)的目标空间分布最佳匹配。通过对具有最佳形状的大型石墨烯器件进行量子输运计算,分析了特征电导分布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验