Suppr超能文献

用有限元和肌肉骨骼模型对食指伸肌装置进行协同仿真。

Cosimulation of the index finger extensor apparatus with finite element and musculoskeletal models.

机构信息

North Carolina State University, Raleigh, NC, United States.

Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States.

出版信息

J Biomech. 2023 Aug;157:111725. doi: 10.1016/j.jbiomech.2023.111725. Epub 2023 Jul 13.

Abstract

Musculoskeletal modeling has been effective for simulating dexterity and exploring the consequences of disability. While previous approaches have examined motor function using multibody dynamics, existing musculoskeletal models of the hand and fingers have difficulty simulating soft tissue such as the extensor mechanism of the fingers, which remains underexplored. To investigate the extensor mechanism and its impact on finger motor function, we developed a finite element model of the index finger extensor mechanism and a cosimulation method that combines the finite element model with a multibody dynamic model. The finite element model and cosimulation were validated through comparison with experimentally derived tissue strains and fingertip endpoint forces respectively. Tissue strains predicted by the finite element model were consistent with the experimentally observed strains of the 9 postures tested in cadaver specimens. Fingertip endpoint forces predicted using the cosimulation were well aligned in both force (difference within 0.60 N) and direction (difference within 30°with experimental results. Sensitivity of the extensor mechanism to changes in modulus and adhesion configuration were evaluated for ± 50% of experimental moduli, presence of the radial and ulnar adhesions, and joint capsule. Simulated strains and endpoint forces were found to be minimally sensitive to alterations in moduli and adhesions. These results are promising and demonstrate the ability of the cosimulation to predict global behavior of the extensor mechanism, while enabling measurement of stresses and strains within the structure itself. This model could be used in the future to predict the outcomes for different surgical repairs of the extensor mechanism.

摘要

肌肉骨骼建模在模拟灵巧性和探索残疾后果方面非常有效。虽然以前的方法使用多体动力学来检查运动功能,但现有的手部和手指肌肉骨骼模型在模拟软组织(如手指的伸肌机制)方面存在困难,这方面仍然研究不足。为了研究伸肌机制及其对手指运动功能的影响,我们开发了一种食指伸肌机制的有限元模型和一种将有限元模型与多体动力学模型相结合的共模拟方法。通过分别将有限元模型与实验得出的组织应变和指尖端点力进行比较,对有限元模型和共模拟进行了验证。有限元模型预测的组织应变与尸体标本中测试的 9 个姿势的实验观察到的应变一致。使用共模拟预测的指尖端点力在力(实验结果的差异在 0.60N 以内)和方向(与实验结果的差异在 30°以内)上都很好地吻合。评估了伸肌机制对模量和附着配置变化的敏感性,模量变化为实验模量的±50%,存在桡侧和尺侧附着以及关节囊。模拟应变和端点力对模量和附着的改变最小敏感。这些结果很有希望,表明共模拟能够预测伸肌机制的整体行为,同时能够测量结构本身内的应力和应变。该模型将来可用于预测不同伸肌机制手术修复的结果。

相似文献

本文引用的文献

4
Development of a dynamic index finger and thumb model to study impairment.开发动态食指和拇指模型以研究损伤。
J Biomech. 2018 Aug 22;77:206-210. doi: 10.1016/j.jbiomech.2018.06.017. Epub 2018 Jun 25.
9
Development of an Open-Source, Discrete Element Knee Model.一种开源离散元膝关节模型的开发。
IEEE Trans Biomed Eng. 2016 Oct;63(10):2056-67. doi: 10.1109/TBME.2016.2585926. Epub 2016 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验