有机改性黏土负载壳聚糖/羟基磷灰石-氧化锌纳米复合材料,具有增强的机械和生物学性能,可应用于骨组织工程。

Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering.

机构信息

Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India.

Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, Tamil Nadu, India.

出版信息

Int J Biol Macromol. 2018 Jan;106:11-19. doi: 10.1016/j.ijbiomac.2017.07.168. Epub 2017 Jul 31.

Abstract

The objective of this study is to design biomimetic organically modified montmorillonite clay (OMMT) supported chitosan/hydroxyapatite-zinc oxide (CTS/HAP-ZnO) nanocomposites (ZnCMH I-III) with improved mechanical and biological properties compared to previously reported CTS/OMMT/HAP composite. Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to analyze the composition and surface morphology of the prepared nanocomposites. Strong antibacterial properties against both Gram-positive and Gram-negative bacterial strains were established for ZnCMH I-III. pH and blood compatibility study revealed that ZnCMH I-III should be nontoxic to the human body. Cytocompatibility of these nanocomposites with human osteoblastic MG-63 cells was also established. Experimental findings suggest that addition of 5wt% of OMMT into CTS/HAP-ZnO (ZnCMH I) gives the best mechanical strength and water absorption capacity. Addition of 0.1wt% of ZnO nanoparticles into CTS-OMMT-HAP significantly enhanced the tensile strengths of ZnCMH I-III compared to previously reported CTS-OMMT-HAP composite. In absence of OMMT, control sample (ZnCH) also showed reduced tensile strength, antibacterial effect and cytocompatibility with osteoblastic cell compared to ZnCMH I. Considering all of the above-mentioned studies, it can be proposed that ZnCMH I nanocomposite has a great potential to be applied in bone tissue engineering.

摘要

本研究旨在设计仿生有机改性蒙脱石粘土(OMMT)负载壳聚糖/羟基磷灰石-氧化锌(CTS/HAP-ZnO)纳米复合材料(ZnCMH I-III),与之前报道的 CTS/OMMT/HAP 复合材料相比,具有更好的力学和生物学性能。傅里叶变换红外光谱、粉末 X 射线衍射、扫描电子显微镜和透射电子显微镜用于分析制备的纳米复合材料的组成和表面形貌。ZnCMH I-III 对革兰氏阳性和革兰氏阴性菌均具有较强的抗菌性能。pH 值和血液相容性研究表明,ZnCMH I-III 对人体应该是无毒的。这些纳米复合材料与人成骨肉瘤 MG-63 细胞的细胞相容性也得到了证实。实验结果表明,在 CTS/HAP-ZnO(ZnCMH I)中添加 5wt%的 OMMT 可获得最佳的力学强度和吸水率。与之前报道的 CTS-OMMT-HAP 复合材料相比,在 CTS-OMMT-HAP 中添加 0.1wt%的 ZnO 纳米粒子可显著提高 ZnCMH I-III 的拉伸强度。在没有 OMMT 的情况下,与 ZnCMH I 相比,对照样品(ZnCH)的拉伸强度、抗菌效果和与成骨细胞的细胞相容性也降低了。考虑到所有上述研究,可以提出 ZnCMH I 纳米复合材料具有在骨组织工程中应用的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索