文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于骨组织工程的含羟基磷灰石、磁性粘土和氧化石墨烯的可生物降解纳米复合支架的制备

Fabrication of biodegradable nanocomposite scaffolds with hydroxyapatite, magnetic clay, and graphene oxide for bone tissue engineering.

作者信息

Babakhani Akram, Peighambardoust Seyed Jamaleddin, Ghahremani-Nasab Maryam, Peighambardoust Naeimeh Sadat

机构信息

Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran.

Stem Cell and Regenerative Medicine Innovation Center, Tabriz University of Medical Sciences, Tabriz, Iran.

出版信息

Sci Rep. 2025 Jul 1;15(1):22235. doi: 10.1038/s41598-025-07270-5.


DOI:10.1038/s41598-025-07270-5
PMID:40595079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12216499/
Abstract

Bone tissue engineering offers an alternative approach to producing scaffolds using biodegradable materials. The extracellular matrix of bone tissue comprises collagen and hydroxyapatite so that regenerated scaffolds can be a combination of polymeric materials and hydroxyapatite. Additives are also used to improve the properties and bring the properties of the regenerated scaffold closer to bone tissue. This study focuses on developing nanocomposite scaffolds composed of natural polymers carboxymethyl cellulose (CMC) and alginate (Alg), combined with the synthetic polymer polyvinyl alcohol (PVA) as the polymer matrix. The mechanical properties of these biopolymers were enhanced using magnetic clay nanoparticles modified with graphene oxide (CGF) and natural hydroxyapatite (HAp). Modified clay was synthesized by adding graphene oxide (via the modified Hummer's method), clay, and FeO nanoparticles. Nanocomposite scaffolds were prepared using the freeze-drying process, incorporating 10 wt. % HAp and 2 wt. % CGF as optimal additives. Comprehensive characterization, including XRD, FT-IR, TGA, SEM, and analysis of porosity, swelling, degradation, and biomineralization, confirmed the formation of a porous polymer matrix with favorable properties. The optimal PVA/CMC/HAp/CGF scaffold demonstrated compressive strength of 12 MPa, porosity of 72%, swelling of 1860%, and biodegradation of 43% over 21 days, while the PVA/Alg/HAp/CGF scaffold exhibited a compressive strength of 8.1 MPa and porosity of 79%. Both scaffolds showed good biomineralization in SBF and a favorable cell viability rate (OD) in MTT toxicity tests, with an OD of 1.483 and 1.451 for PVA/CMC/HAp/CGF and PVA/Alg/HAp/CGF scaffolds, respectively. These findings suggest that the PVA/CMC/HAp/CGF nanocomposite scaffold is a promising candidate for bone tissue engineering applications. By adding hydroxyapatite and magnetic clay modified with graphene oxide to the polymer scaffold, the mechanical properties of the scaffold are increased, appropriate porosity and swelling values are obtained, and desirable cell viability is achieved.

摘要

骨组织工程提供了一种使用可生物降解材料制造支架的替代方法。骨组织的细胞外基质由胶原蛋白和羟基磷灰石组成,因此再生支架可以是聚合物材料和羟基磷灰石的组合。添加剂也被用于改善性能,并使再生支架的性能更接近骨组织。本研究重点开发由天然聚合物羧甲基纤维素(CMC)和海藻酸盐(Alg)组成的纳米复合支架,并结合合成聚合物聚乙烯醇(PVA)作为聚合物基质。使用用氧化石墨烯(CGF)和天然羟基磷灰石(HAp)改性的磁性粘土纳米颗粒增强了这些生物聚合物的机械性能。通过添加氧化石墨烯(通过改进的Hummer方法)、粘土和FeO纳米颗粒合成了改性粘土。使用冷冻干燥工艺制备纳米复合支架,加入10 wt.%的HAp和2 wt.%的CGF作为最佳添加剂。包括XRD、FT-IR、TGA、SEM以及孔隙率、溶胀、降解和生物矿化分析在内的综合表征证实形成了具有良好性能的多孔聚合物基质。最佳的PVA/CMC/HAp/CGF支架在21天内表现出12MPa的抗压强度、72%的孔隙率、1860%的溶胀率和43%的生物降解率,而PVA/Alg/HAp/CGF支架的抗压强度为8.1MPa,孔隙率为79%。两种支架在模拟体液(SBF)中均表现出良好的生物矿化,在MTT毒性试验中具有良好的细胞活力率(OD),PVA/CMC/HAp/CGF和PVA/Alg/HAp/CGF支架的OD分别为1.483和1.451。这些发现表明,PVA/CMC/HAp/CGF纳米复合支架是骨组织工程应用的一个有前途的候选材料。通过向聚合物支架中添加羟基磷灰石和用氧化石墨烯改性的磁性粘土,提高了支架的机械性能,获得了合适的孔隙率和溶胀值,并实现了理想的细胞活力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/dee0b7d1c609/41598_2025_7270_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/75b073ef2b9c/41598_2025_7270_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/128493e7dfe9/41598_2025_7270_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/834f5b0bad6e/41598_2025_7270_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/b1127d316ff8/41598_2025_7270_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/d7f72d3e0e47/41598_2025_7270_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/e71e8cf5c1bc/41598_2025_7270_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/b8b477a51e84/41598_2025_7270_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/61ea10da3970/41598_2025_7270_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/56df1635bf62/41598_2025_7270_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/475aa52f7825/41598_2025_7270_Fig9a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/0be2db028050/41598_2025_7270_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/30b4833db2d2/41598_2025_7270_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/dee0b7d1c609/41598_2025_7270_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/75b073ef2b9c/41598_2025_7270_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/128493e7dfe9/41598_2025_7270_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/834f5b0bad6e/41598_2025_7270_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/b1127d316ff8/41598_2025_7270_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/d7f72d3e0e47/41598_2025_7270_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/e71e8cf5c1bc/41598_2025_7270_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/b8b477a51e84/41598_2025_7270_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/61ea10da3970/41598_2025_7270_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/56df1635bf62/41598_2025_7270_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/475aa52f7825/41598_2025_7270_Fig9a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/0be2db028050/41598_2025_7270_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/30b4833db2d2/41598_2025_7270_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1405/12216499/dee0b7d1c609/41598_2025_7270_Fig12_HTML.jpg

相似文献

[1]
Fabrication of biodegradable nanocomposite scaffolds with hydroxyapatite, magnetic clay, and graphene oxide for bone tissue engineering.

Sci Rep. 2025-7-1

[2]
Fabrication of magnetic nanocomposite scaffolds based on polyvinyl alcohol-chitosan containing hydroxyapatite and clay modified with graphene oxide: Evaluation of their properties for bone tissue engineering applications.

J Mech Behav Biomed Mater. 2024-2

[3]
Design and characterization of AgVO-HAP/GO@PCL ceramic-based scaffolds for enhanced wound healing and tissue regeneration.

J Mater Sci Mater Med. 2025-6-25

[4]
Computational Fluid Dynamics Modeling of Material Transport Through Triply Periodic Minimal Surface Scaffolds for Bone Tissue Engineering.

J Biomech Eng. 2025-3-1

[5]
A numerical study on mechanical and permeability properties of novel design additive manufactured Titanium based metal matrix composite bone scaffold for bone tissue engineering.

J Biomater Appl. 2025-8

[6]
Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration.

J Biomater Sci Polym Ed. 2024-11

[7]
Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique.

Colloids Surf B Biointerfaces. 2011-1-20

[8]
Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering.

Mater Sci Eng C Mater Biol Appl. 2019-10-23

[9]
Effect of graphene oxide in an injectable hydrogel on the osteogenic differentiation of mesenchymal stem cells.

J Biomater Sci Polym Ed. 2025-2

[10]
Plant xylem-inspired chitosan-gelatin scaffolds reinforced with graphene oxide with a superior mechanical strength and hydrophilicity for bone tissue engineering.

Int J Biol Macromol. 2025-8

本文引用的文献

[1]
Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials.

Carbohydr Polym. 2024-9-1

[2]
Optical, thermal, mechanical, and antibacterial properties of polyvinyl alcohol/sodium alginate/ZnMnO nanocomposites films for various optical devices and food packaging applications.

Int J Biol Macromol. 2024-6

[3]
Fabrication of magnetic nanocomposite scaffolds based on polyvinyl alcohol-chitosan containing hydroxyapatite and clay modified with graphene oxide: Evaluation of their properties for bone tissue engineering applications.

J Mech Behav Biomed Mater. 2024-2

[4]
Biomimetic alginate-based electroconductive nanofibrous scaffolds for bone tissue engineering application.

Int J Biol Macromol. 2023-9-30

[5]
Chitosan-polyethylene oxide/clay-alginate nanofiber hydrogel scaffold for bone tissue engineering: Preparation, physical characterization, and biomimetic mineralization.

Int J Biol Macromol. 2023-4-1

[6]
Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds.

Adv Healthc Mater. 2023-4

[7]
Electroactive polymeric nanocomposite BC--(FeO/GO) materials for bone tissue engineering: evaluations.

J Biomater Sci Polym Ed. 2022-8

[8]
Influence of Fish Scale-Based Hydroxyapatite on Forcespun Polycaprolactone Fiber Scaffolds.

ACS Omega. 2022-2-28

[9]
Biomimetic PLGA/Strontium-Zinc Nano Hydroxyapatite Composite Scaffolds for Bone Regeneration.

J Funct Biomater. 2022-1-28

[10]
Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery.

Carbohydr Polym. 2022-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索