Babakhani Akram, Peighambardoust Seyed Jamaleddin, Ghahremani-Nasab Maryam, Peighambardoust Naeimeh Sadat
Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
Stem Cell and Regenerative Medicine Innovation Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Sci Rep. 2025 Jul 1;15(1):22235. doi: 10.1038/s41598-025-07270-5.
Bone tissue engineering offers an alternative approach to producing scaffolds using biodegradable materials. The extracellular matrix of bone tissue comprises collagen and hydroxyapatite so that regenerated scaffolds can be a combination of polymeric materials and hydroxyapatite. Additives are also used to improve the properties and bring the properties of the regenerated scaffold closer to bone tissue. This study focuses on developing nanocomposite scaffolds composed of natural polymers carboxymethyl cellulose (CMC) and alginate (Alg), combined with the synthetic polymer polyvinyl alcohol (PVA) as the polymer matrix. The mechanical properties of these biopolymers were enhanced using magnetic clay nanoparticles modified with graphene oxide (CGF) and natural hydroxyapatite (HAp). Modified clay was synthesized by adding graphene oxide (via the modified Hummer's method), clay, and FeO nanoparticles. Nanocomposite scaffolds were prepared using the freeze-drying process, incorporating 10 wt. % HAp and 2 wt. % CGF as optimal additives. Comprehensive characterization, including XRD, FT-IR, TGA, SEM, and analysis of porosity, swelling, degradation, and biomineralization, confirmed the formation of a porous polymer matrix with favorable properties. The optimal PVA/CMC/HAp/CGF scaffold demonstrated compressive strength of 12 MPa, porosity of 72%, swelling of 1860%, and biodegradation of 43% over 21 days, while the PVA/Alg/HAp/CGF scaffold exhibited a compressive strength of 8.1 MPa and porosity of 79%. Both scaffolds showed good biomineralization in SBF and a favorable cell viability rate (OD) in MTT toxicity tests, with an OD of 1.483 and 1.451 for PVA/CMC/HAp/CGF and PVA/Alg/HAp/CGF scaffolds, respectively. These findings suggest that the PVA/CMC/HAp/CGF nanocomposite scaffold is a promising candidate for bone tissue engineering applications. By adding hydroxyapatite and magnetic clay modified with graphene oxide to the polymer scaffold, the mechanical properties of the scaffold are increased, appropriate porosity and swelling values are obtained, and desirable cell viability is achieved.
骨组织工程提供了一种使用可生物降解材料制造支架的替代方法。骨组织的细胞外基质由胶原蛋白和羟基磷灰石组成,因此再生支架可以是聚合物材料和羟基磷灰石的组合。添加剂也被用于改善性能,并使再生支架的性能更接近骨组织。本研究重点开发由天然聚合物羧甲基纤维素(CMC)和海藻酸盐(Alg)组成的纳米复合支架,并结合合成聚合物聚乙烯醇(PVA)作为聚合物基质。使用用氧化石墨烯(CGF)和天然羟基磷灰石(HAp)改性的磁性粘土纳米颗粒增强了这些生物聚合物的机械性能。通过添加氧化石墨烯(通过改进的Hummer方法)、粘土和FeO纳米颗粒合成了改性粘土。使用冷冻干燥工艺制备纳米复合支架,加入10 wt.%的HAp和2 wt.%的CGF作为最佳添加剂。包括XRD、FT-IR、TGA、SEM以及孔隙率、溶胀、降解和生物矿化分析在内的综合表征证实形成了具有良好性能的多孔聚合物基质。最佳的PVA/CMC/HAp/CGF支架在21天内表现出12MPa的抗压强度、72%的孔隙率、1860%的溶胀率和43%的生物降解率,而PVA/Alg/HAp/CGF支架的抗压强度为8.1MPa,孔隙率为79%。两种支架在模拟体液(SBF)中均表现出良好的生物矿化,在MTT毒性试验中具有良好的细胞活力率(OD),PVA/CMC/HAp/CGF和PVA/Alg/HAp/CGF支架的OD分别为1.483和1.451。这些发现表明,PVA/CMC/HAp/CGF纳米复合支架是骨组织工程应用的一个有前途的候选材料。通过向聚合物支架中添加羟基磷灰石和用氧化石墨烯改性的磁性粘土,提高了支架的机械性能,获得了合适的孔隙率和溶胀值,并实现了理想的细胞活力。
J Mater Sci Mater Med. 2025-6-25
Colloids Surf B Biointerfaces. 2011-1-20
Mater Sci Eng C Mater Biol Appl. 2019-10-23
J Biomater Sci Polym Ed. 2025-2
Int J Biol Macromol. 2023-9-30
Adv Healthc Mater. 2023-4
J Biomater Sci Polym Ed. 2022-8
J Funct Biomater. 2022-1-28