Suppr超能文献

具有自增强电化学发光效率的钌配合物空心多孔聚合物纳米球用于构建超高灵敏适体传感器。

Hollow Porous Polymeric Nanospheres of a Self-Enhanced Ruthenium Complex with Improved Electrochemiluminescent Efficiency for Ultrasensitive Aptasensor Construction.

机构信息

Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China.

出版信息

Anal Chem. 2017 Sep 5;89(17):9232-9238. doi: 10.1021/acs.analchem.7b02003. Epub 2017 Aug 17.

Abstract

Although Ru(II)-complex-based bulk nanomaterials have received considerable attention in electrochemiluminescent (ECL) assays owing to their strong ECL signals, the ECL efficiency of these nanomaterials was quite low since the bulk nanomaterials brought about a serious inner filter effect and excess inactive emitters. Herein, hollow porous polymeric nanospheres of a self-enhanced ruthenium complex (abbreviated as Ru-HPNSs) were prepared with a polyethylenimine-ruthenium complex precursor to greatly decrease the inner filter effect and minimize inactive emitters, which significantly improved the ECL efficiency. On the basis of the novel Ru-HPNSs as efficient ECL tags and target-catalyzed hairpin hybridization as signal amplification strategy, an ultrasensitive ECL aptasensor was constructed for the detection of mucin 1 (MUC1), which showed excellent linear response to a concentration variation from 1.0 fg/mL to 100 pg/mL with the limit of detection down to 0.31 fg/mL. It is worth mentioning that this work opened a new avenue for developing high-performance ECL nanomaterials as well as ultrasensitive ECL biosensors for clinical and biochemical analysis.

摘要

虽然基于 Ru(II)-配合物的体相纳米材料由于其强的电致化学发光 (ECL) 信号而在 ECL 分析中受到了相当多的关注,但由于体相纳米材料引起了严重的内滤效应和过多的非活性发射器,这些纳米材料的 ECL 效率相当低。在此,通过使用聚乙烯亚胺-钌配合物前体制备了具有自增强钌配合物的空心多孔聚合物纳米球(简称 Ru-HPNSs),从而大大降低了内滤效应并最小化了非活性发射器,这显著提高了 ECL 效率。基于新型 Ru-HPNSs 作为高效 ECL 标记物和目标催化发夹杂交作为信号放大策略,构建了用于检测粘蛋白 1 (MUC1) 的超灵敏 ECL 适体传感器,该传感器对浓度从 1.0 fg/mL 到 100 pg/mL 的变化表现出优异的线性响应,检测限低至 0.31 fg/mL。值得一提的是,这项工作为开发高性能 ECL 纳米材料以及用于临床和生化分析的超灵敏 ECL 生物传感器开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验