Department of Applied Physics and Energy Sciences Institute, Yale University , New Haven, Connecticut 06511, United States.
Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California 91125, United States.
Nano Lett. 2017 Sep 13;17(9):5408-5415. doi: 10.1021/acs.nanolett.7b02007. Epub 2017 Aug 8.
Two-dimensional (2D) materials provide a platform for strong light-matter interactions, creating wide-ranging design opportunities via new-material discoveries and new methods for geometrical structuring. We derive general upper bounds to the strength of such light-matter interactions, given only the optical conductivity of the material, including spatial nonlocality, and otherwise independent of shape and configuration. Our material figure-of-merit shows that highly doped graphene is an optimal material at infrared frequencies, whereas single-atomic-layer silver is optimal in the visible. For quantities ranging from absorption and scattering to near-field spontaneous-emission enhancements and radiative heat transfer, we consider canonical geometrical structures and show that in certain cases the bounds can be approached, while in others there may be significant opportunity for design improvement. The bounds can encourage systematic improvements in the design of ultrathin broadband absorbers, 2D antennas, and near-field energy harvesters.
二维(2D)材料为强光物质相互作用提供了一个平台,通过新材料的发现和新的几何结构方法创造了广泛的设计机会。我们推导出了仅基于材料的光学电导率的这种光物质相互作用的一般上限,包括空间非局部性,并且与形状和配置无关。我们的材料优值表明,高掺杂石墨烯在红外频率下是最佳材料,而单层银在可见光下是最佳材料。对于从吸收和散射到近场自发发射增强和辐射热传递的各种量,我们考虑了典型的几何结构,并表明在某些情况下可以接近这些界限,而在其他情况下,可能有很大的设计改进机会。这些界限可以鼓励在超薄宽带吸收体、2D 天线和近场能量收集器的设计中进行系统的改进。